Back to Search
Start Over
A yeast display system for engineering functional peptide-MHC complexes.
- Source :
-
Journal of immunological methods [J Immunol Methods] 2003 Jan 15; Vol. 272 (1-2), pp. 235-46. - Publication Year :
- 2003
-
Abstract
- In a cellular immune response, antigenic peptides derived by intracellular processing of foreign pathogens are bound to the class I major histocompatability complex (MHC I) and presented to CD8(+) cytotoxic T cells. Although the crystal structures of several different MHC products have been solved, many MHC molecules, including some associated with diseases, have not been amenable to biochemical and structural studies. The variability in this success is based largely on the fact that peptide-MHC complexes vary extensively in their stability. These properties also are intimately tied to the biological activity of the complexes. The ability to apply the techniques of directed evolution to this system in order to engineer stable complexes has been complicated by the trimeric structure of peptide-MHC complexes, requiring association of three polypeptides: the heavy chain, beta2-microglubulin (beta2m), and a short peptide. We show here that single-chain forms of peptide-MHC complexes can be expressed as Aga-2 fusions on the surface of yeast. Three different complexes, SIYRYYGL-K(b)-beta2m (SIYR-K(b)), EQYKFYSV-K(b)-beta2m (dEV8-K(b)), and SIINFEKL-K(b)-beta2m (OVA-K(b)), were expressed on yeast and detected by flow cytometry with a conformation-specific anti-K(b) antibody (B.8.24.3). In addition, yeast displaying K(b) loaded with exogenous SIYR and OVA peptides were recognized by a high-affinity T cell receptor that is specific for SIYR-K(b) and by an antibody (25.D1-16) that is specific for OVA-K(b), respectively. Finally, yeast that display the SIYRYYGL-K(b) also directly stimulated CD69 up-regulation on naive 2C T cells. Hence, yeast display represents a technology that can be used for directed evolution of any of the components of the trimeric pep-MHC complex.
- Subjects :
- Animals
Antibodies
Directed Molecular Evolution
Genetic Vectors
H-2 Antigens chemistry
H-2 Antigens genetics
H-2 Antigens metabolism
Histocompatibility Antigens Class I genetics
Histocompatibility Antigens Class I metabolism
In Vitro Techniques
Mice
Oligopeptides genetics
Oligopeptides metabolism
Peptide Library
Receptors, Antigen, T-Cell metabolism
T-Lymphocytes immunology
Histocompatibility Antigens Class I chemistry
Immunologic Techniques
Oligopeptides chemistry
Protein Engineering
Saccharomyces cerevisiae genetics
Subjects
Details
- Language :
- English
- ISSN :
- 0022-1759
- Volume :
- 272
- Issue :
- 1-2
- Database :
- MEDLINE
- Journal :
- Journal of immunological methods
- Publication Type :
- Academic Journal
- Accession number :
- 12505727
- Full Text :
- https://doi.org/10.1016/s0022-1759(02)00439-8