Back to Search
Start Over
Optimization of tether length in nonglycosidically linked bivalent ligands that target sites 2 and 1 of a Shiga-like toxin.
- Source :
-
Journal of the American Chemical Society [J Am Chem Soc] 2003 Mar 19; Vol. 125 (11), pp. 3284-94. - Publication Year :
- 2003
-
Abstract
- A series of bivalent ligands for a Shiga-like toxin have been synthesized, their experimentally determined inhibitory activities were compared with a simplified thermodynamic model, and computer simulations were used to predict the optimal tether length in bivalent ligands. The design of the inhibitors exploits the proximity of the C-2' hydroxyl groups of two P(k)-trisaccharides when bound to two different, neighboring carbohydrate recognizing binding sites located on the surface of Shiga-like toxin. NMR studies of the complex between the toxin and bivalent ligands show that site 2 and site 1 of a single B subunit are simultaneously occupied by a tethered P(k)-trisaccharide dimer. A simplified thermodynamic treatment provides the intrinsic affinities and binding energies for the intermolecular and intramolecular association events and permits the deconvolution of the contributions to the relative binding energies for the set of bivalent ligands. Conformational analysis based on MD simulations for bivalent galabioside dimers containing different tethers demonstrated that the calculated local concentrations of the pendant ligand at the second binding site correlate with the experimentally determined relative affinity values of the respective bivalent ligands, thereby providing a predictive method to optimize tether length.
- Subjects :
- Cross-Linking Reagents chemistry
Drug Design
Enzyme-Linked Immunosorbent Assay
Glycosides chemistry
Glycosides pharmacology
Kinetics
Ligands
Models, Molecular
Nuclear Magnetic Resonance, Biomolecular
Oligosaccharides chemical synthesis
Shiga Toxin 1 chemistry
Shiga Toxin 1 metabolism
Structure-Activity Relationship
Thermodynamics
Oligosaccharides chemistry
Oligosaccharides pharmacology
Shiga Toxin 1 antagonists & inhibitors
Subjects
Details
- Language :
- English
- ISSN :
- 0002-7863
- Volume :
- 125
- Issue :
- 11
- Database :
- MEDLINE
- Journal :
- Journal of the American Chemical Society
- Publication Type :
- Academic Journal
- Accession number :
- 12630884
- Full Text :
- https://doi.org/10.1021/ja0258529