Back to Search
Start Over
Molecular mimicry in the decoding of translational stop signals.
- Source :
-
Progress in nucleic acid research and molecular biology [Prog Nucleic Acid Res Mol Biol] 2003; Vol. 74, pp. 83-121. - Publication Year :
- 2003
-
Abstract
- Molecular mimicry was a concept that was revived as we understood more about the ligands that bound to the active center of the ribosome, and the characteristics of the active center itself. It has been particularly useful for the termination phase of protein synthesis, because for many years this major process seemed not only to be out of step) with the initiation and elongation phases but also there were no common features of the process between eubacteria and eukaryotes. As the facts that supported molecular mimicry emerged, it was seen that the protein factors that facilitated polypeptide chain release when the decoding of an mRNA was complete had common features with the ligands involved in the other phases. Moreover, now common features and mechanisms began to emerge between the eubacterial and eukaryotic RFs and suddenly there seemed to be remarkable synergy between the external ligands and commonality in at least some features of the mechanistic prnciples. Almost 10 years after molecular mimicry took hold as a framework concept, we can now see that this idea is probably too simple. For example, structural mimicry can be apparent if there are extensive conformational changes either in the ribosome active center or in the ligand itself or, most likely, both. Early indications are that the bacterial RF may indeed undergo extensive conformational changes from its solution structure to achieve this accommodation. Thus, as important if not more important than structural and functional mimicry among the ligands, might be their accomodation of a common single active center made up of at least three parts to carry out a complex series of reactions. One part of the ribosomal active center is committed to decoding, a second is committed to the chemistry of putting the protein together and releasing it, and a third part, perhaps residing in the subdomains, is committed to binding ligands so that they can perform their respective single or multiple functions. It might be more accurate to regard the decoding RF as the cuckoo taking over the nest that was crafted and honed through evolution by another, the tRNA. A somewhat ungainly RF, perhaps bigger in dimensions than the tRNA, is able, nevertheless, like the cuckoo, to maneuvre into the nest. Perhaps it pushes the nest a little out of shape, but is still able to use the site for its own functions of stop signal decoding and for facilitating the release of the polypeptide. The term molecular mimicry has been dominant in the literature for a period of important advances in the understanding of protein synthesis. When the first structures of the ribosome appeared, the concept survived and was seen to be valid still. Now, we are at the stage of understanding the more detailed molecular interactions between ligands and the rRNA in particular, and how subtle changes in localized spatial orientations of atoms occur within these interactions. The simplicity of the original concept of mimicry will inevitably be blurred by this more detailed analysis. Nevertheless, it has provided a significant set of principles that allowed development of experimental programs to enhance our understanding of the dynamic events at this remarkable active site at the interface between the two subunits of this fascinating cell organelle, the ribosome.
Details
- Language :
- English
- ISSN :
- 0079-6603
- Volume :
- 74
- Database :
- MEDLINE
- Journal :
- Progress in nucleic acid research and molecular biology
- Publication Type :
- Academic Journal
- Accession number :
- 14510074
- Full Text :
- https://doi.org/10.1016/s0079-6603(03)01011-0