Back to Search Start Over

Estimation of helix-helix association free energy from partial unfolding of bacterioopsin.

Authors :
Nannepaga SJ
Gawalapu R
Velasquez D
Renthal R
Source :
Biochemistry [Biochemistry] 2004 Jan 20; Vol. 43 (2), pp. 550-9.
Publication Year :
2004

Abstract

To obtain thermodynamic information about interactions between transmembrane helices in integral membrane proteins, partial unfolding of bacterioopsin in ethanol/water mixtures was studied by Förster-type resonance energy transfer (FRET) from tryptophan to a dansyl group on Lys 41. Tryptophan to dansyl FRET was detected by measuring sensitized emission at 490-500 nm from 285 nm excitation. FRET was observed in dansylbacterioopsin in apomembranes and in detergent micelles but not in 90% ethanol/water or in the chymotrypsin fragment C2 (residues 1-71). The main fluorescence donors are Trp 86 and Trp 182. Increase of FRET from C2 with added chymotrypsin fragment C1 (residues 72-248) provides an estimate of the C1-C2 association constant as 7.7 x 10(6) M(-1). With increasing ethanol concentration, the FRET signal from dansylbacterioopsin in detergent micelles disappeared with a sharp transition above 60% ethanol. No transition occurred in Trp fluorescence from bacterioopsin lacking the dansyl acceptor, nor did dansyl model compounds undergo a similar transition. Light scattering measurements show that the detergent micelles dissipate below 50% ethanol. Thus the observed transition is likely to be a partial unfolding of bacterioopsin. Assuming a two-state unfolding model, the free energy of unfolding was obtained by extrapolation as 9.0 kcal/mol. The slope of the transition (m-value) was -0.8 kcal mol(-1) M(-1). The unfolding process probably involves dissociation of several helices. The rate of association was measured by stopped-flow fluorometry. Two first-order kinetic processes were observed, having approximately equal weights, with rate constants of 2.32 s (-1) and 0.185 s(-1).

Details

Language :
English
ISSN :
0006-2960
Volume :
43
Issue :
2
Database :
MEDLINE
Journal :
Biochemistry
Publication Type :
Academic Journal
Accession number :
14717611
Full Text :
https://doi.org/10.1021/bi034875c