Back to Search
Start Over
Molecular shuttle chelation: the use of ascorbate, desferrioxamine and Feralex-G in combination to remove nuclear bound aluminum.
- Source :
-
Cellular and molecular neurobiology [Cell Mol Neurobiol] 2004 Jun; Vol. 24 (3), pp. 443-59. - Publication Year :
- 2004
-
Abstract
- 1. Abundant data suggest that aluminum (Al(III)) exposure may be an environmental risk factor contributing to the development, progression and/or neuropathology of several human neurodegenerative disorders, including Alzheimer's disease (AD). 2. Nuclei appear to be one directed target for Al(III) binding, accumulation, and Al(III)-mediated dysfunction due in part to their high content of polyphosphorylated nucleic acids, nucleotides, and nucleoproteins. 3. The design of chelation therapies dealing with the removal of Al(III) from these genetic compartments therefore represents an attractive strategy to alleviate the development and/or progression of central nervous system dysfunction that may arise from excessive Al(III) exposure. 4. In this study we have investigated the potential application of 10 natural and synthetic Al(III) chelators, including ascorbate (AS), desferrioxamine (DF), and Feralex-G (FG), used either alone or in combination, to remove Al(III) preincubated with intact human brain cell nuclei. 5. Although nuclear bound Al(III) was found to be highly refractory to removal, the combination of AS+FG was found to be particularly effective in removing Al(III) from the nuclear matrix. 6. Our data suggest that chelators carrying cis-hydroxy ketone groups, such as FG, are particularly suited to the removal of Al(III) from complex biological systems. 7. We further suggest a mechanism whereby small chelating molecules may penetrate the nucleus, bind Al(III), diffuse to regions accessible by the larger DF or FG molecules and transfer their Al(III) to DF or FG. 8. The proposed mechanism, called molecular shuttle chelation may provide a useful pharmacotherapy in the potential treatment of Al(III) overload disease.
- Subjects :
- Aged
Aluminum metabolism
Ascorbic Acid metabolism
Binding Sites drug effects
Binding Sites physiology
Brain Chemistry
Cell Nucleus metabolism
Chelating Agents metabolism
Chelation Therapy methods
Deferoxamine metabolism
Diffusion drug effects
Drug Synergism
Humans
Molecular Structure
Monosaccharides metabolism
Neurodegenerative Diseases metabolism
Neuroglia chemistry
Neurons chemistry
Pyridones metabolism
Subcellular Fractions chemistry
Terminology as Topic
Aluminum chemistry
Ascorbic Acid chemistry
Cell Nucleus chemistry
Chelating Agents chemistry
Deferoxamine chemistry
Monosaccharides chemistry
Pyridones chemistry
Subjects
Details
- Language :
- English
- ISSN :
- 0272-4340
- Volume :
- 24
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- Cellular and molecular neurobiology
- Publication Type :
- Academic Journal
- Accession number :
- 15206824
- Full Text :
- https://doi.org/10.1023/b:cemn.0000022773.70722.b2