Back to Search Start Over

Insulin-like growth factors-I and -II and insulin-like growth factor-binding protein-2 in dominant equine follicles during spring transition and the ovulatory season.

Authors :
Watson ED
Bae SE
Thomassen R
Thomson SR
Woad K
Armstrong DG
Source :
Reproduction (Cambridge, England) [Reproduction] 2004 Sep; Vol. 128 (3), pp. 321-9.
Publication Year :
2004

Abstract

The period between seasonal anoestrus and cyclicity is characterized in many mares by cyclical growth and regression of large dominant follicles. The insulin-like growth factor (IGF) system plays a key role in follicular growth and regression; therefore, we hypothesized that changes in the IGF system and its binding proteins would modulate onset of cyclicity in mares. Ovaries were obtained from pony mares on the day after detection of an actively growing 30 mm transitional anovulatory follicle, and also at the second or third oestrus of the breeding season on the day after the preovulatory follicle reached 30 mm in diameter. Size of dominant follicles at the time of removal was similar in transition (32 +/- 0.8 mm) and at oestrus (34 +/- 0.6 mm). IGF-I mRNA was present in granulosa cells, with low thecal expression, whereas IGF-II mRNA was confined to the theca layer. Expression of IGF-I and -II mRNAs, and intrafollicular concentrations of oestradiol, were lower (P < 0.01; paired t test) in transitional anovulatory follicles than in preovulatory follicles. Messenger RNA encoding IGFBP-2 was present in both theca and granulosa layers. Steady-state concentrations of mRNA encoding IGFBP-2 mRNA increased (P < 0.001) in theca in preovulatory follicles. Intrafollicular concentrations of IGFBP-2 were higher (P < 0.001) in transitional than in preovulatory follicles. The similarity in circulating concentrations of IGF-I in transitional and cyclic mares, suggested that the somatotrophic axis is not involved in transition from anovulatory to ovulatory cycles. The results suggest that the increased expression of IGF-I and -II mRNAs in preovulatory follicles, along with the decrease in IGFBP-2 concentrations, could increase the bioavailability of intrafollicular IGF in large follicles during the breeding season, and support our hypothesis that intrafollicular IGF bioavailability must exceed a threshold level before ovulation can occur.

Details

Language :
English
ISSN :
1470-1626
Volume :
128
Issue :
3
Database :
MEDLINE
Journal :
Reproduction (Cambridge, England)
Publication Type :
Academic Journal
Accession number :
15333783
Full Text :
https://doi.org/10.1530/rep.1.00100