Back to Search
Start Over
Molecular physiological analysis of the two plastidic ATP/ADP transporters from Arabidopsis.
- Source :
-
Plant physiology [Plant Physiol] 2004 Nov; Vol. 136 (3), pp. 3524-36. Date of Electronic Publication: 2004 Oct 29. - Publication Year :
- 2004
-
Abstract
- Arabidopsis (Arabidopsis thaliana) possesses two isoforms of plastidic ATP/ADP transporters (AtNTT1 and AtNTT2) exhibiting similar biochemical properties. To analyze the function of both isoforms on the molecular level, we examined the expression pattern of both genes by northern-blot analysis and promoter-beta-glucuronidase fusions. AtNTT1 represents a sugar-induced gene mainly expressed in stem and roots, whereas AtNTT2 is expressed in several Arabidopsis tissues with highest accumulation in developing roots and young cotyledons. Developing lipid-storing seeds hardly contained AtNTT1 or -2 transcripts. The absence of a functional AtNTT1 gene affected plant development only slightly, whereas AtNTT2T-DNA, AtNTT1-2T-DNA, and RNA interference (RNAi) plants showed retarded plant development, mainly characterized by a reduced ability to generate primary roots and a delayed chlorophyll accumulation in seedlings. Electron microscopic examination of chloroplast substructure also revealed an impaired formation of thylakoids in RNAi seedlings. Moreover, RNAi- and AtNTT1-2T-DNA plants showed reduced accumulation of the nuclear-encoded protein CP24 during deetiolation. Under short-day conditions reduced plastidic ATP import capacity correlates with a substantially reduced plant growth rate. This effect is absent under long-day conditions, strikingly indicating that nocturnal ATP import into chloroplasts is important. Plastidic ATP/ADP transport activity exerts significant control on lipid synthesis in developing Arabidopsis seeds. In total we made the surprising observation that plastidic ATP/ADP transport activity is not required to pass through the complete plant life cycle. However, plastidic ATP/ADP-transporter activity is required for both an undisturbed development of young tissues and a controlled cellular metabolism in mature leaves.
- Subjects :
- Arabidopsis genetics
Arabidopsis growth & development
Gene Expression Regulation, Plant
Genotype
Germination genetics
Germination physiology
Lipid Metabolism
Mitochondrial ADP, ATP Translocases genetics
Mutation
Phenotype
Plant Leaves growth & development
Plant Leaves metabolism
Plant Roots growth & development
Plant Roots metabolism
Plants, Genetically Modified
Seedlings genetics
Seedlings growth & development
Seedlings ultrastructure
Seeds genetics
Seeds growth & development
Arabidopsis metabolism
Mitochondrial ADP, ATP Translocases metabolism
Plastids metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 0032-0889
- Volume :
- 136
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- Plant physiology
- Publication Type :
- Academic Journal
- Accession number :
- 15516503
- Full Text :
- https://doi.org/10.1104/pp.104.049502