Back to Search Start Over

Gene expression profiling in conjunction with physiological rescues of IKKalpha-null cells with wild type or mutant IKKalpha reveals distinct classes of IKKalpha/NF-kappaB-dependent genes.

Authors :
Massa PE
Li X
Hanidu A
Siamas J
Pariali M
Pareja J
Savitt AG
Catron KM
Li J
Marcu KB
Source :
The Journal of biological chemistry [J Biol Chem] 2005 Apr 08; Vol. 280 (14), pp. 14057-69. Date of Electronic Publication: 2005 Feb 04.
Publication Year :
2005

Abstract

Cellular responses to stress-like stimuli require the IkappaB kinase (IKK) signalsome (IKKalpha, IKKbeta, and NEMO/IKKgamma) to activate NF-kappaB-dependent genes. IKKbeta and NEMO/IKKgamma are required to release NF-kappaB p65/p50 heterodimers from IkappaBalpha, resulting in their nuclear migration and sequence-specific DNA binding; but IKKalpha was found to be dispensable for this initial phase of canonical NF-kappaB activation. Nevertheless, IKKalpha-/- mouse embryonic fibroblasts (MEFs) fail to express NF-kappaB targets in response to proinflammatory stimuli, uncovering a nuclear role for IKKalpha in NF-kappaB activation. However, it remains unknown whether the global defect in NF-kappaB-dependent gene expression of IKKalpha-/- cells is caused by the absence of IKKalpha kinase activity. We show by gene expression profiling that rescue of near physiological levels of wild type IKKalpha in IKKalpha-/- MEFs globally restores expression of their canonical NF-kappaB target genes. To prove that the kinase activity of IKKalpha was required on a genomic scale, the same physiological rescue was performed with a kinase-dead, ATP binding domain IKKalpha mutant (IKKalpha(K44M)). Remarkably, the IKKalpha(K44M) protein rescued approximately 28% of these genes, albeit in a largely stimulus-independent manner with the notable exception of several genes that also acquired tumor necrosis factor-alpha responsiveness. Thus the IKKalpha-containing signalsome unexpectedly functions in the presence and absence of extracellular signals in both kinase-dependent and -independent modes to differentially modulate the expression of five distinct classes of IKKalpha/NF-kappaB-dependent genes.

Details

Language :
English
ISSN :
0021-9258
Volume :
280
Issue :
14
Database :
MEDLINE
Journal :
The Journal of biological chemistry
Publication Type :
Academic Journal
Accession number :
15695520
Full Text :
https://doi.org/10.1074/jbc.M414401200