Back to Search Start Over

Oxidative damage in telomeric DNA disrupts recognition by TRF1 and TRF2.

Authors :
Opresko PL
Fan J
Danzy S
Wilson DM 3rd
Bohr VA
Source :
Nucleic acids research [Nucleic Acids Res] 2005 Feb 24; Vol. 33 (4), pp. 1230-9. Date of Electronic Publication: 2005 Feb 24 (Print Publication: 2005).
Publication Year :
2005

Abstract

The ends of linear chromosomes are capped by protein-DNA complexes termed telomeres. Telomere repeat binding factors 1 and 2 (TRF1 and TRF2) bind specifically to duplex telomeric DNA and are critical components of functional telomeres. Consequences of telomere dysfunction include genomic instability, cellular apoptosis or senescence and organismal aging. Mild oxidative stress induces increased erosion and loss of telomeric DNA in human fibroblasts. We performed binding assays to determine whether oxidative DNA damage in telomeric DNA alters the binding activity of TRF1 and TRF2 proteins. Here, we report that a single 8-oxo-guanine lesion in a defined telomeric substrate reduced the percentage of bound TRF1 and TRF2 proteins by at least 50%, compared with undamaged telomeric DNA. More dramatic effects on TRF1 and TRF2 binding were observed with multiple 8-oxo-guanine lesions in the tandem telomeric repeats. Binding was likewise disrupted when certain intermediates of base excision repair were present within the telomeric tract, namely abasic sites or single nucleotide gaps. These studies indicate that oxidative DNA damage may exert deleterious effects on telomeres by disrupting the association of telomere-maintenance proteins TRF1 and TRF2.

Details

Language :
English
ISSN :
1362-4962
Volume :
33
Issue :
4
Database :
MEDLINE
Journal :
Nucleic acids research
Publication Type :
Academic Journal
Accession number :
15731343
Full Text :
https://doi.org/10.1093/nar/gki273