Back to Search Start Over

The Bacillus subtilis ydcDE operon encodes an endoribonuclease of the MazF/PemK family and its inhibitor.

Authors :
Pellegrini O
Mathy N
Gogos A
Shapiro L
Condon C
Source :
Molecular microbiology [Mol Microbiol] 2005 Jun; Vol. 56 (5), pp. 1139-48.
Publication Year :
2005

Abstract

Operons encoding stable toxins and their labile antidote are widespread in prokaryotes and play important roles in plasmid partitioning and cellular responses to stress. One such family of toxins MazF/ChpAK/PemK encodes an endoribonuclease that inactivates cellular mRNAs by cleaving them at specific, but frequently occurring sites. Here we show that the Bacillus subtilis ydcE gene encodes a member of this family of RNases, which we have called EndoA. Overexpression of EndoA is toxic for bacterial cell growth and this toxicity is reversed by coexpression of the gene immediately upstream, ydcD. Furthermore, YdcD inhibits EndoA activity directly in vitro. EndoA has similar cleavage specificity to MazF and PemK and yields cleavage products with 3'-phosphate and 5'-hydroxyl groups, typical of EDTA-resistant degradative RNases. This is the first example of an antitoxin-toxin system in B. subtilis.

Details

Language :
English
ISSN :
0950-382X
Volume :
56
Issue :
5
Database :
MEDLINE
Journal :
Molecular microbiology
Publication Type :
Academic Journal
Accession number :
15882409
Full Text :
https://doi.org/10.1111/j.1365-2958.2005.04606.x