Back to Search Start Over

Combining SPECT medical imaging and computational fluid dynamics for analyzing blood and dialysate flow in hemodialyzers.

Authors :
Eloot S
D'Asseler Y
De Bondt P
Verdonck R
Source :
The International journal of artificial organs [Int J Artif Organs] 2005 Jul; Vol. 28 (7), pp. 739-49.
Publication Year :
2005

Abstract

For a better insight in dialyzer efficiency with respect to local mass transport in a low flux dialyzer (Fresenius F6HPS), blood and dialysate flow distributions were visualized with computational fluid dynamic (CFD) simulations, which were validated with single photon emission computed tomography (SPECT) imaging. To visualize blood-side flow while avoiding transport through the fiber membrane, a bolus of 99m-Technetium labeled MAA (Macro Aggregated Albumin) was injected in the flow using an electronic valve. Water was used to simulate blood, but flow rate was adjusted according to laws of dynamic similarity to account for the viscosity difference (factor 2.75). For the visualization of dialysate flow, a bolus of 99m-Technetium labeled DMSA (Dimercaptosuccinic Acid) was injected, while pressurized air in the blood compartment avoided transmembrane flow. For each test series, 3D acquisitions were made on a two respectively three-headed SPECT camera. By evaluating the images at different time steps, dynamic 3D intensity plots were obtained, which were further used to derive local flow velocities. Additionally, three-dimensional CFD models were developed for simulating the overall blood and dialysate flow, respectively. In both models,the whole fiber compartment was defined as a porous medium with overall axial and radial permeability derived theoretically and from in vitro tests. With the imaging as well as with the computational technique, a homogeneous blood flow distribution was found, while vortices and fluid stagnation were observed in the dialyzer inlet manifold. The non-homogeneous dialysate distribution, as found with SPECT imaging, implies the occurrence of non-efficient sites with respect to mass transfer. The discrepancy between the dialysate results of both techniques indicated that the assumption of a constant fiber bundle permeability in the CFD model was too optimistic. In conclusion, medical imaging techniques like SPECT are very helpful to validate CFD models, which can be further applied for dialyzer design and optimization.

Details

Language :
English
ISSN :
0391-3988
Volume :
28
Issue :
7
Database :
MEDLINE
Journal :
The International journal of artificial organs
Publication Type :
Academic Journal
Accession number :
16049908
Full Text :
https://doi.org/10.1177/039139880502800713