Back to Search
Start Over
Flow perfusion culture of marrow stromal cells seeded on porous biphasic calcium phosphate ceramics.
- Source :
-
Annals of biomedical engineering [Ann Biomed Eng] 2005 Sep; Vol. 33 (9), pp. 1238-48. - Publication Year :
- 2005
-
Abstract
- Calcium phosphate ceramics have been widely used for filling bone defects to aid in the regeneration of new bone tissue. Addition of osteogenic cells to porous ceramic scaffolds may accelerate the bone repair process. This study demonstrates the feasibility of culturing marrow stromal cells (MSCs) on porous biphasic calcium phosphate ceramic scaffolds in a flow perfusion bioreactor. The flow of medium through the scaffold porosity benefits cell differentiation by enhancing nutrient transport to the scaffold interior and by providing mechanical stimulation to cells in the form of fluid shear. Primary rat MSCs were seeded onto porous ceramic (60% hydroxyapatite, 40% beta-tricalcium phosphate) scaffolds, cultured for up to 16 days in static or flow perfusion conditions, and assessed for osteoblastic differentiation. Cells were distributed throughout the entire scaffold by 16 days of flow perfusion culture whereas they were located only along the scaffold perimeter in static culture. At all culture times, flow perfused constructs demonstrated greater osteoblastic differentiation than statically cultured constructs as evidenced by alkaline phosphatase activity, osteopontin secretion into the culture medium, and histological evaluation. These results demonstrate the feasibility and benefit of culturing cell/ceramic constructs in a flow perfusion bioreactor for bone tissue engineering applications.
- Subjects :
- Animals
Bioreactors
Bone Marrow Cells cytology
Cells, Cultured
Male
Osteoblasts cytology
Rats
Rats, Wistar
Stromal Cells cytology
Stromal Cells physiology
Bone Marrow Cells physiology
Bone Regeneration physiology
Calcium Phosphates chemistry
Cell Differentiation physiology
Hydroxyapatites chemistry
Osteoblasts physiology
Tissue Engineering instrumentation
Tissue Engineering methods
Subjects
Details
- Language :
- English
- ISSN :
- 0090-6964
- Volume :
- 33
- Issue :
- 9
- Database :
- MEDLINE
- Journal :
- Annals of biomedical engineering
- Publication Type :
- Academic Journal
- Accession number :
- 16133930
- Full Text :
- https://doi.org/10.1007/s10439-005-5536-y