Back to Search
Start Over
Effect of exercise intensity and hypoxia on skeletal muscle AMPK signaling and substrate metabolism in humans.
- Source :
-
American journal of physiology. Endocrinology and metabolism [Am J Physiol Endocrinol Metab] 2006 Apr; Vol. 290 (4), pp. E694-702. Date of Electronic Publication: 2005 Nov 01. - Publication Year :
- 2006
-
Abstract
- We compared in human skeletal muscle the effect of absolute vs. relative exercise intensity on AMP-activated protein kinase (AMPK) signaling and substrate metabolism under normoxic and hypoxic conditions. Eight untrained males cycled for 30 min under hypoxic conditions (11.5% O(2), 111 +/- 12 W, 72 +/- 3% hypoxia Vo(2 peak); 72% Hypoxia) or under normoxic conditions (20.9% O(2)) matched to the same absolute (111 +/- 12 W, 51 +/- 1% normoxia Vo(2 peak); 51% Normoxia) or relative (to Vo(2 peak)) intensity (171 +/- 18 W, 73 +/- 1% normoxia Vo(2 peak); 73% Normoxia). Increases (P < 0.05) in AMPK activity, AMPKalpha Thr(172) phosphorylation, ACCbeta Ser(221) phosphorylation, free AMP content, and glucose clearance were more influenced by the absolute than by the relative exercise intensity, being greatest in 73% Normoxia with no difference between 51% Normoxia and 72% Hypoxia. In contrast to this, increases in muscle glycogen use, muscle lactate content, and plasma catecholamine concentration were more influenced by the relative than by the absolute exercise intensity, being similar in 72% Hypoxia and 73% Normoxia, with both trials higher than in 51% Normoxia. In conclusion, increases in muscle AMPK signaling, free AMP content, and glucose disposal during exercise are largely determined by the absolute exercise intensity, whereas increases in plasma catecholamine levels, muscle glycogen use, and muscle lactate levels are more closely associated with the relative exercise intensity.
- Subjects :
- AMP-Activated Protein Kinases
Adult
Biopsy, Fine-Needle
Blood Glucose metabolism
Catecholamines blood
Energy Metabolism
Fatty Acids, Nonesterified blood
Glycerol blood
Glycogen metabolism
Heart Rate physiology
Humans
Insulin blood
Lactic Acid blood
Lactic Acid metabolism
Male
Muscle, Skeletal enzymology
Phosphorylation
Signal Transduction
Exercise physiology
Hypoxia metabolism
Multienzyme Complexes metabolism
Muscle, Skeletal metabolism
Protein Serine-Threonine Kinases metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 0193-1849
- Volume :
- 290
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- American journal of physiology. Endocrinology and metabolism
- Publication Type :
- Academic Journal
- Accession number :
- 16263768
- Full Text :
- https://doi.org/10.1152/ajpendo.00464.2005