Back to Search
Start Over
Is fall prevention by vitamin D mediated by a change in postural or dynamic balance?
- Source :
-
Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA [Osteoporos Int] 2006; Vol. 17 (5), pp. 656-63. Date of Electronic Publication: 2006 Mar 01. - Publication Year :
- 2006
-
Abstract
- Introduction: The objectives were:(1) to validate a quantitative balance assessment method for fall risk prediction; (2) to investigate whether the effect of vitamin D and calcium on the risk of falling is mediated through postural or dynamic balance, as assessed by this method.<br />Materials and Methods: A secondary analysis of a double blind randomized controlled trial was employed, which included 64 institutionalized elderly women with complete balance assessment (age range: 65-97; mean 25-hydroxyvitamin D levels: 16.4 ng/ml (SD +/-9.9). Participants received 1,200 mg calcium plus 800 IU cholecalciferol (n=33) or 1,200 mg calcium (n=31) per day over a 3-month treatment period. Using an electronic device attached to the lower back of the participant, balance was assessed as the degree of trunk angular displacement and angular velocity during a postural task (standing on two legs, eyes open, for 20 s) and a dynamic task (get up from a standard height chair with arm rests, sit down and then stand up again and remain standing).<br />Results: It was found that both postural and dynamic balance independently and significantly predicted the rate of falling within the 3-month follow-up. Vitamin D plus calcium reduced the rate of falls by 60% [relative risk (RR)=0.40; 95% CI: 0.17, 0.94] if compared with calcium alone. Once postural and dynamic balance were added to the regression analysis, they both attenuated the effect of vitamin D plus calcium on the rate of falls. For postural balance, the RR changed by 22% from 0.40 to 0.62 if angular displacement was added to the model, and by 9% from 0.40 to 0.49 if angular velocity was added. For dynamic balance, it changed by 1% from 0.40 to 0.41 if angular displacement was added, and by 14% from 0.40 to 0.54 if angular velocity was added.<br />Discussion: Thus, balance assessment using trunk angular displacement is a valid method for the prediction of falls in older women. Of the observed 60% reduction in the rate of falls by vitamin D plus calcium supplementation compared with calcium alone, up to 22% of the treatment effect was explained by a change in postural balance and up to 14% by dynamic balance.
Details
- Language :
- English
- ISSN :
- 0937-941X
- Volume :
- 17
- Issue :
- 5
- Database :
- MEDLINE
- Journal :
- Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA
- Publication Type :
- Academic Journal
- Accession number :
- 16508700
- Full Text :
- https://doi.org/10.1007/s00198-005-0030-9