Back to Search
Start Over
Phenylalanine reduces synaptic density in mixed cortical cultures from mice.
- Source :
-
Pediatric research [Pediatr Res] 2006 Apr; Vol. 59 (4 Pt 1), pp. 544-8. - Publication Year :
- 2006
-
Abstract
- Classical phenylketonuria (PKU) is caused by deficiency of phenylalanine hydroxylase, resulting in an accumulation of its upstream metabolite phenylalanine in brain tissue and cerebrospinal fluid of PKU patients. PKU is neuropathologically characterized by reduced dendritic arborization, loss of synapses, and neurodegeneration. We investigated whether increased concentrations of phenylalanine cause reduced synaptic density and alter dendritic branching. We treated primary cortical neurons differentiated for 21 d in vitro with 5 mM phenylalanine in the presence of all essential amino acids. Immunocytochemical analysis of 12 and 21 d in vitro primary neurons revealed no changes of dendritic morphology or neuronal viability but a significant difference in synaptic density, suggesting that elevated concentrations of extracellular phenylalanine cause an impairment of synaptogenesis. Although impairment of cerebral energy metabolism has been identified as an important pathophysiological principal in many diseases, respiratory chain function has not been extensively studied in PKU before. We investigated whether phenylalanine inhibits respiratory chain complexes I-V. In vitro analysis revealed no inhibitory effect of phenylalanine on complexes I-V, but an inhibition of pyruvate kinase, a key enzyme of glycolysis, catalyzing the formation of pyruvate. Pyruvate kinase is part of the enzyme assay to investigate enzyme activity of mitochondrial complex V and it remains to be elucidated whether this finding is relevant in vivo. In conclusion, elevated concentrations of phenylalanine might be involved in mechanisms underlying impaired synaptogenesis in PKU, supporting the common therapeutic strategy to reduce phenylalanine concentrations in the brain to prevent neurodegeneration.
- Subjects :
- Animals
Cells, Cultured
Electron Transport Chain Complex Proteins metabolism
Embryo, Mammalian anatomy & histology
Humans
Mice
Mice, Inbred C57BL
Neurons cytology
Neurons metabolism
Phenylketonurias metabolism
Phenylketonurias pathology
Phenylketonurias physiopathology
Pyruvate Kinase metabolism
Cerebral Cortex cytology
Phenylalanine metabolism
Synapses physiology
Subjects
Details
- Language :
- English
- ISSN :
- 0031-3998
- Volume :
- 59
- Issue :
- 4 Pt 1
- Database :
- MEDLINE
- Journal :
- Pediatric research
- Publication Type :
- Academic Journal
- Accession number :
- 16549526
- Full Text :
- https://doi.org/10.1203/01.pdr.0000203091.45988.8d