Back to Search Start Over

Polyketide chain skipping mechanism in the biosynthesis of the hybrid nonribosomal peptide-polyketide antitumor antibiotic leinamycin in Streptomyces atroolivaceus S-140.

Authors :
Tang GL
Cheng YQ
Shen B
Source :
Journal of natural products [J Nat Prod] 2006 Mar; Vol. 69 (3), pp. 387-93.
Publication Year :
2006

Abstract

A fundamental feature of modular polyketide synthases (PKSs) is the highly predictable relationship between the domain order and the chemical functional groups of resultant polyketide products. Sequence analysis and biochemical characterization of the leinamycin (LNM) biosynthetic gene cluster from Streptomyces atroolivaceus S-140 has revealed a gene, lnmJ, that encodes five PKS modules but with six acyl carrier protein (ACP) domains. The LnmJ PKS module 6 contains two ACP domains, ACP(6-1) and ACP(6-2), separated by a C-methyltransferase domain. Site-directed mutagenesis experiments were carried out with each of these ACPs to test alternative mechanisms proposed for their role in polyketide chain elongation. The in vivo results revealed a new type of polyketide chain "skipping" mechanism, in which either ACP is sufficient for LNM biosynthesis. Biochemical characterization in vitro showed that both ACPs can be loaded with a malonate extender unit by the LnmG acyl transferase; however, ACP(6-2) appears to be preferred because the loading efficiency is about 5-fold that of ACP(6-1). The results are consistent with ACP(6-2) being used for the initial chain elongation step wth ACP(6-1) being involved in the ensuing C-methylation process. These findings provide new insights into the polyketide chain skipping mechanism for modular PKSs.

Details

Language :
English
ISSN :
0163-3864
Volume :
69
Issue :
3
Database :
MEDLINE
Journal :
Journal of natural products
Publication Type :
Academic Journal
Accession number :
16562841
Full Text :
https://doi.org/10.1021/np050467t