Back to Search Start Over

Characteristics of PCDD/F distributions in vapor and solid phases and emissions from the Waelz process.

Authors :
Chi KH
Chang SH
Chang MB
Source :
Environmental science & technology [Environ Sci Technol] 2006 Mar 15; Vol. 40 (6), pp. 1770-5.
Publication Year :
2006

Abstract

The Waelz process is a classic method used for recovering zinc from electric arc furnace (EAF) dusts containing relatively high concentrations of PCDD/Fs (polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans) as well as volatile metals, such as Zn, Pb, and Cu, and chlorine. As a result of the operating temperature in the cooling process and high carbon and chlorine contents, significant PCDD/Fs are formed in the typical Waelz process, causing public concerns regarding PCDD/F emissions. In this study, flue gas and ash samplings are simultaneously conducted at different sampling points to evaluate the removal efficiency and the partitioning of PCDD/Fs between the vapor and solid phases in the Waelz plant investigated. With the environment (temperature window, sufficient retention time, chlorine, and catalysts available) conducive to PCDD/F formation in the dust settling chamber (DSC), a significantly high PCDD/F concentration (1223 ng TEQ/Nm3) is measured in flue gas downstream from the DSC of the Waelz plant investigated. In addition, the cyclone and bag filter adopted in this facility can only remove 51.3% and 69.4%, respectively, of the PCDD/Fs in the flue gas, resulting in a high PCDD/F concentration (145 ng TEQ/Nm3) measured in the stack gas of the Waelz plant investigated. On the basis of treating 1 ton of EAF dust, the total PCDD/F discharge (stack gas emission + ash discharge) is 840 ng TEQ/kg EAF dust of the Waelz plant investigated. Because of the lack of effective air pollutant control devices for PCDD/Fs, about 560 ng TEQ/kg EAF dust are discharged via stack gas in this facility.

Details

Language :
English
ISSN :
0013-936X
Volume :
40
Issue :
6
Database :
MEDLINE
Journal :
Environmental science & technology
Publication Type :
Academic Journal
Accession number :
16570596
Full Text :
https://doi.org/10.1021/es052030d