Back to Search Start Over

Investigation of the H(2) Oxidation System in Rhizobium japonicum 122 DES Nodule Bacteroids.

Authors :
Emerich DW
Ruiz-Argüeso T
Russell SA
Evans HJ
Source :
Plant physiology [Plant Physiol] 1980 Dec; Vol. 66 (6), pp. 1061-6.
Publication Year :
1980

Abstract

The H(2)-oxidizing complex in Rhizobium japonicum 122 DES bacteroids failed to catalyze, at a measurable rate, (2)H(1)H exchange from a mixture of (2)H(2) and (1)H(2) in presence of (2)H(2)O and (1)H(2)O, providing no evidence for reversibility of the hydrogenase reaction in vivo. In the H(2) oxidation reaction, there was no significant discrimination between (2)H(2) and (1)H(2), indicating that the initial H(2)-activation step in the over-all H(2) oxidation reaction is not rate-limiting. By use of improved methods, an apparent K(m) for H(2) of 0.05 micromolar was determined. The H(2) oxidation reaction in bacteroids was strongly inhibited by cyanide (88% at 0.05 millimolar), theonyltrifluoroacetone, and other metal-complexing agents. Carbonyl cyanide m-chlorophenylhydrazone at 0.005 millimolar and 2,4-dinitrophenol at 0.5 millimolar inhibited H(2) oxidation and stimulated O(2) uptake. This and other evidence suggest the involvement of cytochromes and nonheme iron proteins in the pathway of electron transport from H(2) to O(2). Partial pressures of H(2) at 0.03 atmosphere and below had a pronounced inhibitory effect on endogenous respiration by bacteroid suspensions. The inhibition of CO(2) evolution by low partial pressures of H(2) suggests that H(2) utilization may result in conservation of oxidizable substrates and benefits the symbiosis under physiological conditions. Succinate, acetate, and formate at concentrations of 50 millimolar inhibited rates of H(2) uptake by 8, 29, and 25%, respectively. The inhibition by succinate was noncompetitive and that by acetate and formate was uncompetitive. A concentration of 11.6 millimolar CO(2) (initial concentration) in solution inhibited H(2) uptake by bacteroid suspensions by 18%. Further research is necessary to establish the significance of the inhibition of H(2) uptake by succinate, acetate, formate, and CO(2) in the metabolism of the H(2)-uptake-positive strains of Rhizobium.

Details

Language :
English
ISSN :
0032-0889
Volume :
66
Issue :
6
Database :
MEDLINE
Journal :
Plant physiology
Publication Type :
Academic Journal
Accession number :
16661577
Full Text :
https://doi.org/10.1104/pp.66.6.1061