Back to Search
Start Over
Predicting high-risk preterm birth using artificial neural networks.
- Source :
-
IEEE transactions on information technology in biomedicine : a publication of the IEEE Engineering in Medicine and Biology Society [IEEE Trans Inf Technol Biomed] 2006 Jul; Vol. 10 (3), pp. 540-9. - Publication Year :
- 2006
-
Abstract
- A reengineered approach to the early prediction of preterm birth is presented as a complimentary technique to the current procedure of using costly and invasive clinical testing on high-risk maternal populations. Artificial neural networks (ANNs) are employed as a screening tool for preterm birth on a heterogeneous maternal population; risk estimations use obstetrical variables available to physicians before 23 weeks gestation. The objective was to assess if ANNs have a potential use in obstetrical outcome estimations in low-risk maternal populations. The back-propagation feedforward ANN was trained and tested on cases with eight input variables describing the patient's obstetrical history; the output variables were: 1) preterm birth; 2) high-risk preterm birth; and 3) a refined high-risk preterm birth outcome excluding all cases where resuscitation was delivered in the form of free flow oxygen. Artificial training sets were created to increase the distribution of the underrepresented class to 20%. Training on the refined high-risk preterm birth model increased the network's sensitivity to 54.8%, compared to just over 20% for the nonartificially distributed preterm birth model.
- Subjects :
- Artificial Intelligence
Canada epidemiology
Humans
Incidence
Infant, Newborn
Pattern Recognition, Automated methods
Perinatal Care methods
Reproducibility of Results
Risk Factors
Sensitivity and Specificity
Decision Support Systems, Clinical
Diagnosis, Computer-Assisted methods
Nerve Net
Outcome Assessment, Health Care methods
Premature Birth diagnosis
Premature Birth epidemiology
Risk Assessment methods
Subjects
Details
- Language :
- English
- ISSN :
- 1089-7771
- Volume :
- 10
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- IEEE transactions on information technology in biomedicine : a publication of the IEEE Engineering in Medicine and Biology Society
- Publication Type :
- Academic Journal
- Accession number :
- 16871723
- Full Text :
- https://doi.org/10.1109/titb.2006.872069