Back to Search Start Over

Integrating genetic and network analysis to characterize genes related to mouse weight.

Authors :
Ghazalpour A
Doss S
Zhang B
Wang S
Plaisier C
Castellanos R
Brozell A
Schadt EE
Drake TA
Lusis AJ
Horvath S
Source :
PLoS genetics [PLoS Genet] 2006 Aug 18; Vol. 2 (8), pp. e130. Date of Electronic Publication: 2006 Jul 05.
Publication Year :
2006

Abstract

Systems biology approaches that are based on the genetics of gene expression have been fruitful in identifying genetic regulatory loci related to complex traits. We use microarray and genetic marker data from an F2 mouse intercross to examine the large-scale organization of the gene co-expression network in liver, and annotate several gene modules in terms of 22 physiological traits. We identify chromosomal loci (referred to as module quantitative trait loci, mQTL) that perturb the modules and describe a novel approach that integrates network properties with genetic marker information to model gene/trait relationships. Specifically, using the mQTL and the intramodular connectivity of a body weight-related module, we describe which factors determine the relationship between gene expression profiles and weight. Our approach results in the identification of genetic targets that influence gene modules (pathways) that are related to the clinical phenotypes of interest.<br />Competing Interests: Competing interests. The Molecular Biology Institute is a wholly-owned subsidiary of Merck & Co., Inc.

Details

Language :
English
ISSN :
1553-7404
Volume :
2
Issue :
8
Database :
MEDLINE
Journal :
PLoS genetics
Publication Type :
Academic Journal
Accession number :
16934000
Full Text :
https://doi.org/10.1371/journal.pgen.0020130