Back to Search Start Over

Role of hypoxia inducible factor-1 alpha in modulation of apoptosis resistance.

Authors :
Kilic M
Kasperczyk H
Fulda S
Debatin KM
Source :
Oncogene [Oncogene] 2007 Mar 29; Vol. 26 (14), pp. 2027-38. Date of Electronic Publication: 2006 Oct 16.
Publication Year :
2007

Abstract

Hypoxia inducible factor-1 (HIF-1) is the major transcription factor and key regulator of adoptive responses to hypoxia. Although it usually promotes tumor cell survival under hypoxia, it has also been implied to trigger apoptosis. Although the impact of hypoxia has been extensively studied in many adult solid tumors, its role in most childhood tumors, for example, in rhabdomyosarcoma (RMS) or Ewing sarcoma (ES), has not yet been addressed. Here, we report that hypoxia protects A204 RMS and A673 ES cells against anticancer drug- or tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis and that Hif-1alpha plays a key role in conferring apoptosis resistance under hypoxia. Although a functional HIF-1 pathway and proapoptotic proteins such as p53 and Bcl-2/E1B 19 kDa interacting protein 3 were activated under hypoxia in both A204 RMS and A673 ES cells, these cells remained refractory to apoptosis. Concomitant analysis of antiapoptotic proteins revealed that hypoxia induced expression of Bcl-2 and inhibitor of apoptosis proteins (IAP)-2 as well as proteins associated with anaerobic metabolism such as the glucose transporter protein GLUT-1 and the glycolytic enzyme Aldolase A. Specific downregulation of Hif-1alpha by RNA interference significantly enhanced apoptosis under hypoxia by preventing the hypoxia-mediated increase in GLUT-1 expression without altering expression levels of the antiapoptotic proteins Bcl-2 or cIAP-2. Moreover, glucose deprivation-induced apoptosis of A204 RMS and A673 ES cells was inhibited under hypoxic conditions in a Hif-1alpha-dependent manner. As GLUT-1 was induced via Hif-1alpha under hypoxia in A204 RMS and A673 ES, these findings suggest that the Hif-1alpha-mediated increase in glucose uptake plays an important role in conferring apoptosis resistance. Thus, hypoxia-inducible genes may represent novel targets for therapeutic intervention in some pediatric tumors, which warrants further investigation.

Details

Language :
English
ISSN :
0950-9232
Volume :
26
Issue :
14
Database :
MEDLINE
Journal :
Oncogene
Publication Type :
Academic Journal
Accession number :
17043658
Full Text :
https://doi.org/10.1038/sj.onc.1210008