Back to Search Start Over

D-501036, a novel selenophene-based triheterocycle derivative, exhibits potent in vitro and in vivo antitumoral activity which involves DNA damage and ataxia telangiectasia-mutated nuclear protein kinase activation.

Authors :
Juang SH
Lung CC
Hsu PC
Hsu KS
Li YC
Hong PC
Shiah HS
Kuo CC
Huang CW
Wang YC
Huang L
Chen TS
Chen SF
Fu KC
Hsu CL
Lin MJ
Chang CJ
Ashendel CL
Chan TC
Chou KM
Chang JY
Source :
Molecular cancer therapeutics [Mol Cancer Ther] 2007 Jan; Vol. 6 (1), pp. 193-202.
Publication Year :
2007

Abstract

D-501036 [2,5-bis(5-hydroxymethyl-2-selenienyl)-3-hydroxymethyl-N-methylpyrrole] is herein identified as a novel antineoplastic agent with a broad spectrum of antitumoral activity against several human cancer cells and an IC(50) value in the nanomolar range. The IC(50) values for D-501036 in the renal proximal tubule, normal bronchial epithelial, and fibroblast cells were >10 mumol/L. D-501036 exhibited no cross-resistance with vincristine- and paclitaxel-resistant cell lines, whereas a low level of resistance toward the etoposide-resistant KB variant was observed. Cell cycle analysis established that D-501036 treatment resulted in a dose-dependent accumulation in S phase with concomitant loss of both the G(0)-G(1) and G(2)-M phase in both Hep 3B and A-498 cells. Pulsed-field gel electrophoresis showed D-501036-induced, concentration-dependent DNA breaks in both Hep 3B and A-498 cells. These breaks did not involve interference with either topoisomerase-I and topoisomerase-II function or DNA binding. Rapid reactive oxygen species production and formation of Se-DNA adducts were evident following exposure of cells to D-501036, indicating that D-501036-mediated DNA breaks were attributable to the induction of reactive oxygen species and DNA adduct formation. Moreover, D-501036-induced DNA damage activated ataxia telangiectasia-mutated nuclear protein kinase, leading to hyperphosphorylation of Chk1, Chk2, and p53, decreased expression of CDC25A, and up-regulation of p21(WAF1) in both p53-proficient and p53-deficient cells. Collectively, the results indicate that D-501036-induced cell death was associated with DNA damage-mediated induction of ataxia telangiectasia-mutated activation, and p53-dependent and -independent apoptosis pathways. Notably, D-501036 shows potent activity against the growth of xenograft tumors of human renal carcinoma A-498 cells. Thus, D-501036 is a promising anticancer compound that has strong potential for the management of human cancers.

Details

Language :
English
ISSN :
1535-7163
Volume :
6
Issue :
1
Database :
MEDLINE
Journal :
Molecular cancer therapeutics
Publication Type :
Academic Journal
Accession number :
17237279
Full Text :
https://doi.org/10.1158/1535-7163.MCT-06-0482