Back to Search Start Over

A high density barley microsatellite consensus map with 775 SSR loci.

Authors :
Varshney RK
Marcel TC
Ramsay L
Russell J
Röder MS
Stein N
Waugh R
Langridge P
Niks RE
Graner A
Source :
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik [Theor Appl Genet] 2007 Apr; Vol. 114 (6), pp. 1091-103. Date of Electronic Publication: 2007 Mar 08.
Publication Year :
2007

Abstract

A microsatellite or simple sequence repeat (SSR) consensus map of barley was constructed by joining six independent genetic maps based on the mapping populations 'Igri x Franka', 'Steptoe x Morex', 'OWB(Rec) x OWB(Dom)', 'Lina x Canada Park', 'L94 x Vada' and 'SusPtrit x Vada'. Segregation data for microsatellite markers from different research groups including SCRI (Bmac, Bmag, EBmac, EBmag, HVGeneName, scsssr), IPK (GBM, GBMS), WUR (GBM), Virginia Polytechnic Institute (HVM), and MPI for Plant Breeding (HVGeneName), generated in above mapping populations, were used in the computer program RECORD to order the markers of the individual linkage data sets. Subsequently, a framework map was constructed for each chromosome by integrating the 496 "bridge markers" common to two or more individual maps with the help of the computer programme JoinMap 3.0. The final map was calculated by following a "neighbours" map approach. The integrated map contained 775 unique microsatellite loci, from 688 primer pairs, ranging from 93 (6H) to 132 (2H) and with an average of 111 markers per linkage group. The genomic DNA-derived SSR marker loci had a higher polymorphism information content value (average 0.61) as compared to the EST/gene-derived SSR loci (average 0.48). The consensus map spans 1,068 cM providing an average density of one SSR marker every 1.38 cM. Such a high-density consensus SSR map provides barley molecular breeding programmes with a better choice regarding the quality of markers and a higher probability of polymorphic markers in an important chromosomal interval. This map also offers the possibilities of thorough alignment for the (future) physical map and implementation in haplotype diversity studies of barley.

Details

Language :
English
ISSN :
0040-5752
Volume :
114
Issue :
6
Database :
MEDLINE
Journal :
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
Publication Type :
Academic Journal
Accession number :
17345060
Full Text :
https://doi.org/10.1007/s00122-007-0503-7