Back to Search Start Over

Functional analysis of activating receptor LMIR4 as a counterpart of inhibitory receptor LMIR3.

Authors :
Izawa K
Kitaura J
Yamanishi Y
Matsuoka T
Oki T
Shibata F
Kumagai H
Nakajima H
Maeda-Yamamoto M
Hauchins JP
Tybulewicz VLJ
Takai T
Kitamura T
Source :
The Journal of biological chemistry [J Biol Chem] 2007 Jun 22; Vol. 282 (25), pp. 17997-18008. Date of Electronic Publication: 2007 Apr 16.
Publication Year :
2007

Abstract

The leukocyte mono-Ig-like receptor (LMIR) belongs to a new family of paired immunoreceptors. In this study, we analyzed activating receptor LMIR4/CLM-5 as a counterpart of inhibitory receptor LMIR3/CLM-1. LMIR4 is expressed in myeloid cells, including granulocytes, macrophages, and mast cells, whereas LMIR3 is more broadly expressed. The association of LMIR4 with Fc receptor-gamma among immunoreceptor tyrosine-based activation motif-bearing molecules was indispensable for LMIR4-mediated functions of bone marrow-derived mast cells, but dispensable for its surface expression. Cross-linking of LMIR4 led to Lyn- and Syk-dependent activation of bone marrow-derived mast cells, resulting in cytokine production and degranulation, whereas that of LMIR3 did not. The triggering of LMIR4 and TLR4 synergistically caused robust cytokine production in accordance with enhanced activation of ERK, whereas the co-ligation of LMIR4 and LMIR3 dramatically abrogated cytokine production. Notably, intraperitoneal administration of lipopolysaccharide strikingly up-regulated LMIR3 and down-regulated LMIR4, whereas that of granulocyte colony-stimulating factor up-regulated both LMIR3 and LMIR4 in granulocytes. Cross-linking of LMIR4 in bone marrow granulocytes also resulted in their activation, which was enhanced by lipopolysaccharide. Collectively, these results suggest that the innate immune system is at least in part regulated by the qualitative and quantitative balance of the paired receptors LMIR3 and LMIR4.

Details

Language :
English
ISSN :
0021-9258
Volume :
282
Issue :
25
Database :
MEDLINE
Journal :
The Journal of biological chemistry
Publication Type :
Academic Journal
Accession number :
17438331
Full Text :
https://doi.org/10.1074/jbc.M701100200