Back to Search Start Over

Bayesian spatial risk prediction of Schistosoma mansoni infection in western Côte d'Ivoire using a remotely-sensed digital elevation model.

Authors :
Beck-Wörner C
Raso G
Vounatsou P
N'Goran EK
Rigo G
Parlow E
Utzinger J
Source :
The American journal of tropical medicine and hygiene [Am J Trop Med Hyg] 2007 May; Vol. 76 (5), pp. 956-63.
Publication Year :
2007

Abstract

An important epidemiologic feature of schistosomiasis is the focal distribution of the disease. Thus, the identification of high-risk communities is an essential first step for targeting interventions in an efficient and cost-effective manner. We used a remotely-sensed digital elevation model (DEM), derived hydrologic features (i.e., stream order, and catchment area), and fitted Bayesian geostatistical models to assess associations between environmental factors and infection with Schistosoma mansoni among more than 4,000 school children from the region of Man in western Côte d'Ivoire. At the unit of the school, we found significant correlations between the infection prevalence of S. mansoni and stream order of the nearest river, water catchment area, and altitude. In conclusion, the use of a freely available 90 m high-resolution DEM, geographic information system applications, and Bayesian spatial modeling facilitates risk prediction for S. mansoni, and is a powerful approach for risk profiling of other neglected tropical diseases that are pervasive in the developing world.

Details

Language :
English
ISSN :
0002-9637
Volume :
76
Issue :
5
Database :
MEDLINE
Journal :
The American journal of tropical medicine and hygiene
Publication Type :
Academic Journal
Accession number :
17488922