Back to Search
Start Over
Role of TRPV1 and intracellular Ca2+ in excitation of cardiac sensory neurons by bradykinin.
- Source :
-
American journal of physiology. Regulatory, integrative and comparative physiology [Am J Physiol Regul Integr Comp Physiol] 2007 Jul; Vol. 293 (1), pp. R276-83. Date of Electronic Publication: 2007 May 09. - Publication Year :
- 2007
-
Abstract
- Bradykinin is an important mediator produced during myocardial ischemia and infarction that can activate and/or sensitize cardiac spinal (sympathetic) sensory neurons to trigger chest pain. Because a long-onset latency is associated with the bradykinin effect on cardiac spinal afferents, a cascade of intracellular signaling events is likely involved in the action of bradykinin on cardiac nociceptors. In this study, we determined the signal transduction mechanisms involved in bradykinin stimulation of cardiac nociceptors. Cardiac dorsal root ganglion (DRG) neurons in rats were labeled by intracardiac injection of a fluorescent tracer, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine percholate (DiI). Whole cell current-clamp recordings were performed in acutely isolated DRG neurons. In DiI-labeled DRG neurons, 1 microM bradykinin significantly increased the firing frequency and lowered the membrane potential. Iodoresiniferatoxin, a highly specific transient receptor potential vanilloid type 1 (TRPV1) antagonist, significantly reduced the excitatory effect of bradykinin. Furthermore, the stimulating effect of bradykinin on DiI-labeled DRG neurons was significantly attenuated by baicalein (a selective inhibitor of 12-lipoxygenase) or 2-aminoethyl diphenylborinate [an inositol 1,4,5-trisphosphate (IP(3)) antagonist]. In addition, the effect of bradykinin on cardiac DRG neurons was abolished after the neurons were treated with BAPTA-AM or thapsigargin (to deplete intracellular Ca(2+) stores) but not in the Ca(2+)-free extracellular solution. Collectively, these findings provide new evidence that 12-lipoxygenase products, IP(3), and TRPV1 channels contribute importantly to excitation of cardiac nociceptors by bradykinin. Activation of TRPV1 and the increase in the intracellular Ca(2+) are critically involved in activation/sensitization of cardiac nociceptors by bradykinin.
- Subjects :
- Animals
Arachidonate 12-Lipoxygenase metabolism
Chelating Agents pharmacology
Egtazic Acid analogs & derivatives
Egtazic Acid pharmacology
Electrophysiology
Enzyme Inhibitors pharmacology
Extracellular Space physiology
Flavanones pharmacology
Ganglia, Spinal cytology
Ganglia, Spinal physiology
Inositol 1,4,5-Trisphosphate physiology
Intracellular Space physiology
Male
Membrane Potentials drug effects
Neurons, Afferent drug effects
Nociceptors drug effects
Rats
Rats, Sprague-Dawley
Thapsigargin pharmacology
Bradykinin pharmacology
Calcium physiology
Heart innervation
Neurons, Afferent physiology
TRPV Cation Channels physiology
Subjects
Details
- Language :
- English
- ISSN :
- 0363-6119
- Volume :
- 293
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- American journal of physiology. Regulatory, integrative and comparative physiology
- Publication Type :
- Academic Journal
- Accession number :
- 17491115
- Full Text :
- https://doi.org/10.1152/ajpregu.00094.2007