Back to Search
Start Over
Periodontal bacterial DNA suppresses the immune response to mutans streptococcal glucosyltransferase.
- Source :
-
Infection and immunity [Infect Immun] 2007 Aug; Vol. 75 (8), pp. 4088-96. Date of Electronic Publication: 2007 May 21. - Publication Year :
- 2007
-
Abstract
- Certain CpG motifs found in bacterial DNA enhance immune responses through Toll-like receptor 9 (TLR-9) and may also demonstrate adjuvant properties. Our objective was to determine if DNA from bacteria associated with periodontal disease could affect the immune response to other bacterial antigens in the oral cavity. Streptococcus sobrinus glucosyltransferase (GTF), an enzyme involved in dental caries pathogenesis, was used as a test antigen. Rowett rats were injected with aluminum hydroxide (alum) with buffer, alum-GTF, or alum-GTF together with either Escherichia coli DNA, Fusobacterium nucleatum DNA, or Porphyromonas gingivalis DNA. Contrary to expectation, animals receiving alum-GTF plus bacterial DNA (P. gingivalis in particular) demonstrated significantly reduced serum immunoglobulin G (IgG) antibody, salivary IgA antibody, and T-cell proliferation to GTF compared to animals immunized with alum-GTF alone. A diminished antibody response was also observed after administration of alum-GTF with the P. gingivalis DNA either together or separately, indicating that physical complexing of antigen and DNA was not responsible for the reduction in antibody. Since TLR triggering by DNA induces synthesis of prospective suppressive factors (e.g., suppressor of cytokine signaling [SOCS]), the effects of P. gingivalis DNA and GTF exposure on rat splenocyte production of SOCS family molecules and inflammatory cytokines were investigated in vitro. P. gingivalis DNA significantly up-regulated SOCS1 and SOCS5 expression and down-regulated interleukin-10 expression by cultured splenocytes. These results suggested that DNA from periodontal disease-associated bacteria did not enhance, but in fact suppressed, the immune response to a protein antigen from cariogenic streptococci, potentially through suppressive SOCS components triggered by innate mechanisms.
- Subjects :
- Aluminum Hydroxide immunology
Animals
Antibodies, Bacterial blood
Cells, Cultured
Cytokines biosynthesis
Cytokines genetics
Dental Caries immunology
Dental Caries microbiology
Female
Immunoglobulin G blood
Porphyromonas gingivalis genetics
Porphyromonas gingivalis immunology
RNA, Messenger biosynthesis
RNA, Messenger genetics
Rats
Rats, Inbred Strains
Reverse Transcriptase Polymerase Chain Reaction
Specific Pathogen-Free Organisms
Spleen cytology
Spleen immunology
Streptococcus sobrinus enzymology
Suppressor of Cytokine Signaling Proteins biosynthesis
Suppressor of Cytokine Signaling Proteins genetics
T-Lymphocytes immunology
Bacterial Proteins immunology
DNA, Bacterial immunology
Glucosyltransferases immunology
Periodontitis microbiology
Streptococcus sobrinus immunology
Subjects
Details
- Language :
- English
- ISSN :
- 0019-9567
- Volume :
- 75
- Issue :
- 8
- Database :
- MEDLINE
- Journal :
- Infection and immunity
- Publication Type :
- Academic Journal
- Accession number :
- 17517867
- Full Text :
- https://doi.org/10.1128/IAI.00623-07