Back to Search
Start Over
Radiolabeled divalent peptidomimetic vitronectin receptor antagonists as potential tumor radiotherapeutic and imaging agents.
- Source :
-
Bioconjugate chemistry [Bioconjug Chem] 2007 Jul-Aug; Vol. 18 (4), pp. 1266-79. Date of Electronic Publication: 2007 Jun 19. - Publication Year :
- 2007
-
Abstract
- The integrin receptor alphavbeta3 is overexpressed on the endothelial cells of growing tumors and on some tumor cells themselves. A radiolabeled alphavbeta3 antagonists belonging to the quinolin-4-one class of peptidomimetics (TA138) was previously shown to exhibit high affinity for integrin alphavbeta3 and high selectivity versus other integrin receptors. 111In-TA138 exhibited high tumor uptake in the c-neu Oncomouse mammary adenocarcinoma model and produced excellent scintigraphic images. This study describes the synthesis of eight divalent versions of TA138 and their evaluation as potential tumor radiotherapeutic agents. The two main variables in this study were the length of the spacer bridging the biotargeting moieties and the total negative charge of the molecules imparted by the cysteic acid pharmacokinetic modifiers. Receptor affinity was evaluated in a panel of integrin receptor affinity assays, and biodistribution studies using the 111In-labeled derivatives were carried out in the c-neu Oncomouse model. All divalent agents maintained the high receptor affinity and selectivity of TA138, and six of the eight 111In derivatives exhibited blood clearance that was faster than 111In-TA138 at 24 h postinjection (PI). All divalent agents exhibited tumor uptake and retention at 24 h PI that was higher than 111In-TA138. Tumor/organ ratios were improved for most of the divalent agents at 24 h PI in critical nontarget organs marrow, kidney, and liver, with the agents having intermediate-length spacers (29-43 A) showing the largest improvement. As an example, 111In-15 showed tumor uptake of 14.3% ID/g at 24 h PI and tumor/organ ratios as follows: marrow, 3.24; kidney, 7.29; liver, 8.51. A comparison of therapeutic indices for 90Y-TA138 and 177Lu-15 indicate an improved therapeutic index for the divalent agent. The implications for radiotherapeutic applications and the mechanism of this multivalent effect are discussed.
- Subjects :
- Adenocarcinoma diagnostic imaging
Adenocarcinoma metabolism
Adenocarcinoma radiotherapy
Animals
Binding, Competitive
Breast Neoplasms diagnostic imaging
Breast Neoplasms metabolism
Breast Neoplasms radiotherapy
Diagnostic Imaging
Female
Heterocyclic Compounds, 1-Ring chemistry
Heterocyclic Compounds, 1-Ring therapeutic use
Indium Radioisotopes pharmacokinetics
Indium Radioisotopes therapeutic use
Integrin alphaVbeta3 metabolism
Lutetium chemistry
Lutetium therapeutic use
Mice
Peptides chemistry
Peptides pharmacokinetics
Peptides therapeutic use
Radioisotopes chemistry
Radioisotopes therapeutic use
Radionuclide Imaging
Radiopharmaceuticals chemistry
Radiopharmaceuticals therapeutic use
Sulfonamides chemistry
Sulfonamides therapeutic use
Tissue Distribution
Heterocyclic Compounds, 1-Ring pharmacokinetics
Indium Radioisotopes chemistry
Integrin alphaVbeta3 antagonists & inhibitors
Lutetium pharmacokinetics
Radioisotopes pharmacokinetics
Radiopharmaceuticals pharmacokinetics
Sulfonamides pharmacokinetics
Subjects
Details
- Language :
- English
- ISSN :
- 1043-1802
- Volume :
- 18
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- Bioconjugate chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 17579472
- Full Text :
- https://doi.org/10.1021/bc070002+