Back to Search Start Over

Salinosporamide A (NPI-0052) potentiates apoptosis, suppresses osteoclastogenesis, and inhibits invasion through down-modulation of NF-kappaB regulated gene products.

Authors :
Ahn KS
Sethi G
Chao TH
Neuteboom ST
Chaturvedi MM
Palladino MA
Younes A
Aggarwal BB
Source :
Blood [Blood] 2007 Oct 01; Vol. 110 (7), pp. 2286-95. Date of Electronic Publication: 2007 Jul 03.
Publication Year :
2007

Abstract

Salinosporamide A (also called NPI-0052), recently identified from the marine bacterium Salinispora tropica, is a potent inhibitor of 20S proteasome and exhibits therapeutic potential against a wide variety of tumors through a poorly understood mechanism. Here we demonstrate that salinosporamide A potentiated the apoptosis induced by tumor necrosis factor alpha (TNF), bortezomib, and thalidomide, and this correlated with down-regulation of gene products that mediate cell proliferation (cyclin D1, cyclooxygenase-2 [COX-2], and c-Myc), cell survival (Bcl-2, Bcl-xL, cFLIP, TRAF1, IAP1, IAP2, and survivin), invasion (matrix metallopro-teinase-9 [MMP-9] and ICAM-1), and angiogenesis (vascular endothelial growth factor [VEGF]). Salinosporamide A also suppressed TNF-induced tumor cell invasion and receptor activator of nuclear factor kappaB ligand (RANKL)-induced osteoclastogenesis. We also found that it suppressed both constitutive and inducible NF-kappaB activation. Compared with bortezomib, MG-132, N-acetyl-leucyl-leucyl-norleucinal (ALLN), and lactacystin, salinosporamide A was found to be the most potent suppressor of NF-kappaB activation. Further studies showed that salinosporamide A inhibited TNF-induced inhibitory subunit of NF-kappaB alpha (IkappaBalpha) degradation, nuclear translocation of p65, and NF-kappaB-dependent reporter gene expression but had no effect on IkappaBalpha kinase activation, IkappaBalpha phosphorylation, or IkappaBalpha ubiquitination. Thus, overall, our results indicate that salinosporamide A enhances apoptosis, suppresses osteoclastogenesis, and inhibits invasion through suppression of the NF-kappaB pathway.

Details

Language :
English
ISSN :
0006-4971
Volume :
110
Issue :
7
Database :
MEDLINE
Journal :
Blood
Publication Type :
Academic Journal
Accession number :
17609425
Full Text :
https://doi.org/10.1182/blood-2007-04-084996