Back to Search Start Over

The chromatin-remodeling factor FACT contributes to centromeric heterochromatin independently of RNAi.

Authors :
Lejeune E
Bortfeld M
White SA
Pidoux AL
Ekwall K
Allshire RC
Ladurner AG
Source :
Current biology : CB [Curr Biol] 2007 Jul 17; Vol. 17 (14), pp. 1219-24. Date of Electronic Publication: 2007 Jul 05.
Publication Year :
2007

Abstract

Centromeres exert vital cellular functions in mitosis and meiosis. A specialized histone and other chromatin-bound factors nucleate a dynamic protein assembly that is required for the proper segregation of sister chromatids. In several organisms, including the fission yeast, Schizosaccharomyces pombe, the RNAi pathway contributes to the formation of silent chromatin in pericentromeric regions. Little is known about how chromatin-remodeling factors contribute to heterochromatic integrity and centromere function. Here we show that the histone chaperone and remodeling complex FACT is required for centromeric-heterochromatin integrity and accurate chromosome segregation. We show that Spt16 and Pob3 are two subunits of the S. pombe FACT complex. Surprisingly, yeast strains deleted for pob3+ are viable and alleviate gene silencing at centromeric repeats and at the silent mating-type locus. Importantly, like heterochromatin and RNAi pathway mutants, Pob3 null strains exhibit lagging chromosomes on anaphase spindles. Whereas the processing of centromeric RNA transcripts into siRNAs is maintained in Pob3 mutants, Swi6-association with the centromere is reduced. Our studies provide the first experimental evidence for a role of the RNA polymerase II cofactor FACT in heterochromatin integrity and in centromere function.

Details

Language :
English
ISSN :
0960-9822
Volume :
17
Issue :
14
Database :
MEDLINE
Journal :
Current biology : CB
Publication Type :
Academic Journal
Accession number :
17614284
Full Text :
https://doi.org/10.1016/j.cub.2007.06.028