Back to Search Start Over

Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis.

Authors :
Wu Y
Chen L
Scott PG
Tredget EE
Source :
Stem cells (Dayton, Ohio) [Stem Cells] 2007 Oct; Vol. 25 (10), pp. 2648-59. Date of Electronic Publication: 2007 Jul 05.
Publication Year :
2007

Abstract

Although chronic wounds are common, treatment for these disabling conditions remains limited and largely ineffective. In this study, we examined the benefit of bone marrow-derived mesenchymal stem cells (BM-MSCs) in wound healing. Using an excisional wound splinting model, we showed that injection around the wound and application to the wound bed of green fluorescence protein (GFP)(+) allogeneic BM-MSCs significantly enhanced wound healing in normal and diabetic mice compared with that of allogeneic neonatal dermal fibroblasts or vehicle control medium. Fluorescence-activated cell sorting analysis of cells derived from the wound for GFP-expressing BM-MSCs indicated engraftments of 27% at 7 days, 7.6% at 14 days, and 2.5% at 28 days of total BM-MSCs administered. BM-MSC-treated wounds exhibited significantly accelerated wound closure, with increased re-epithelialization, cellularity, and angiogenesis. Notably, BM-MSCs, but not CD34(+) bone marrow cells in the wound, expressed the keratinocyte-specific protein keratin and formed glandular structures, suggesting a direct contribution of BM-MSCs to cutaneous regeneration. Moreover, BM-MSC-conditioned medium promoted endothelial cell tube formation. Real-time polymerase chain reaction and Western blot analysis revealed high levels of vascular endothelial growth factor and angiopoietin-1 in BM-MSCs and significantly greater amounts of the proteins in BM-MSC-treated wounds. Thus, our data suggest that BM-MSCs promote wound healing through differentiation and release of proangiogenic factors. Disclosure of potential conflicts of interest is found at the end of this article.

Details

Language :
English
ISSN :
1549-4918
Volume :
25
Issue :
10
Database :
MEDLINE
Journal :
Stem cells (Dayton, Ohio)
Publication Type :
Academic Journal
Accession number :
17615264
Full Text :
https://doi.org/10.1634/stemcells.2007-0226