Back to Search Start Over

Rise of oceanographic barriers in continuous populations of a cetacean: the genetic structure of harbour porpoises in Old World waters.

Authors :
Fontaine MC
Baird SJ
Piry S
Ray N
Tolley KA
Duke S
Birkun A Jr
Ferreira M
Jauniaux T
Llavona A
Oztürk B
A Oztürk A
Ridoux V
Rogan E
Sequeira M
Siebert U
Vikingsson GA
Bouquegneau JM
Michaux JR
Source :
BMC biology [BMC Biol] 2007 Jul 25; Vol. 5, pp. 30. Date of Electronic Publication: 2007 Jul 25.
Publication Year :
2007

Abstract

Background: Understanding the role of seascape in shaping genetic and demographic population structure is highly challenging for marine pelagic species such as cetaceans for which there is generally little evidence of what could effectively restrict their dispersal. In the present work, we applied a combination of recent individual-based landscape genetic approaches to investigate the population genetic structure of a highly mobile extensive range cetacean, the harbour porpoise in the eastern North Atlantic, with regards to oceanographic characteristics that could constrain its dispersal.<br />Results: Analyses of 10 microsatellite loci for 752 individuals revealed that most of the sampled range in the eastern North Atlantic behaves as a 'continuous' population that widely extends over thousands of kilometres with significant isolation by distance (IBD). However, strong barriers to gene flow were detected in the south-eastern part of the range. These barriers coincided with profound changes in environmental characteristics and isolated, on a relatively small scale, porpoises from Iberian waters and on a larger scale porpoises from the Black Sea.<br />Conclusion: The presence of these barriers to gene flow that coincide with profound changes in oceanographic features, together with the spatial variation in IBD strength, provide for the first time strong evidence that physical processes have a major impact on the demographic and genetic structure of a cetacean. This genetic pattern further suggests habitat-related fragmentation of the porpoise range that is likely to intensify with predicted surface ocean warming.

Details

Language :
English
ISSN :
1741-7007
Volume :
5
Database :
MEDLINE
Journal :
BMC biology
Publication Type :
Academic Journal
Accession number :
17651495
Full Text :
https://doi.org/10.1186/1741-7007-5-30