Back to Search
Start Over
Possible involvement of post-dopamine D2 receptor signalling components in the pathophysiology of schizophrenia.
Possible involvement of post-dopamine D2 receptor signalling components in the pathophysiology of schizophrenia.
- Source :
-
The international journal of neuropsychopharmacology [Int J Neuropsychopharmacol] 2008 Mar; Vol. 11 (2), pp. 197-205. Date of Electronic Publication: 2007 Aug 06. - Publication Year :
- 2008
-
Abstract
- Par-4 has been suggested to mediate dopamine neurotransmission. Dopamine D2 receptor (DRD2) activation induces a signalling complex of AKT1, PP2A and beta-arrestin2 which dephosphorylates/inactivates AKT1 thereby activating GSK-3beta, transducing dopamine-dependent behaviour. DRD2 activation also results in down-regulation of PKA activity. Among other substrates PKA phosphorylates GSK-3beta. Prolonged DRD2 activation leads to its 'desensitization' which involves GRKs and beta-arrestins. beta-arrestin1 binds to phosphorylated receptors preventing further G-protein stimulation. This study examined whether Par-4, beta-arrestin1, AKT1 and GSK-3beta are involved in the pathophysiology of schizophrenia. Lymphocytes obtained from schizophrenia and bipolar patients and healthy controls recruited from the Beer-Sheva Mental Health Center were transformed by Epstein-Barr virus (EBV) into lymphocyte-derived cell lines (LDCL). Post-mortem brain samples were obtained from the Rebecca L. Cooper Brain Bank, Parkville, Australia. The study was approved by the IRB committees of Beer-Sheva, Israel and Parkville, Australia. Levels of the specific proteins were assayed by Western blotting. beta-arrestin1 protein levels were significantly ~2-fold increased in LDCL from schizophrenia patients while Par-4 protein levels were unaltered. A 63% significant decrease was found in frontal cortex phospho-Ser9-GSK-3beta protein levels in schizophrenia but not in those of AKT1, Par-4 or beta-arrestin1. Elevated beta-arrestin1 protein levels in LDCL and decreased phospho-Ser9-GSK-3beta protein levels in post-mortem frontal cortex of schizophrenia patients vs. control groups support the possible involvement of these proteins in the pathophysiology of schizophrenia. However, since we did not find differences in beta-arrestin1, AKT1 and Par-4 protein levels in post-mortem frontal cortex of schizophrenia patients and although GSK-3beta participates in other signalling cascades we can not rule out the possibility that the differences found reflect deviation in DRD2 signalling.
- Subjects :
- Adult
Animals
Arrestins metabolism
Autopsy
Bipolar Disorder pathology
Bipolar Disorder physiopathology
Case-Control Studies
Cell Line, Transformed
Cerebral Cortex drug effects
Cerebral Cortex enzymology
Cerebral Cortex pathology
Dopamine Antagonists pharmacology
Dopamine D2 Receptor Antagonists
Female
Glycogen Synthase Kinase 3 metabolism
Glycogen Synthase Kinase 3 beta
Haloperidol pharmacology
Humans
Israel
Lymphocytes enzymology
Lymphocytes pathology
Male
Middle Aged
Phosphorylation
Proto-Oncogene Proteins c-akt metabolism
Rats
Rats, Sprague-Dawley
Receptors, Thrombin metabolism
Schizophrenia pathology
Schizophrenia physiopathology
Victoria
beta-Arrestins
Bipolar Disorder metabolism
Cerebral Cortex metabolism
Lymphocytes metabolism
Receptors, Dopamine D2 metabolism
Schizophrenia metabolism
Signal Transduction drug effects
Subjects
Details
- Language :
- English
- ISSN :
- 1461-1457
- Volume :
- 11
- Issue :
- 2
- Database :
- MEDLINE
- Journal :
- The international journal of neuropsychopharmacology
- Publication Type :
- Academic Journal
- Accession number :
- 17681085
- Full Text :
- https://doi.org/10.1017/S1461145707007948