Back to Search Start Over

Possible involvement of post-dopamine D2 receptor signalling components in the pathophysiology of schizophrenia.

Possible involvement of post-dopamine D2 receptor signalling components in the pathophysiology of schizophrenia.

Authors :
Amar S
Shaltiel G
Mann L
Shamir A
Dean B
Scarr E
Bersudsky Y
Belmaker RH
Agam G
Source :
The international journal of neuropsychopharmacology [Int J Neuropsychopharmacol] 2008 Mar; Vol. 11 (2), pp. 197-205. Date of Electronic Publication: 2007 Aug 06.
Publication Year :
2008

Abstract

Par-4 has been suggested to mediate dopamine neurotransmission. Dopamine D2 receptor (DRD2) activation induces a signalling complex of AKT1, PP2A and beta-arrestin2 which dephosphorylates/inactivates AKT1 thereby activating GSK-3beta, transducing dopamine-dependent behaviour. DRD2 activation also results in down-regulation of PKA activity. Among other substrates PKA phosphorylates GSK-3beta. Prolonged DRD2 activation leads to its 'desensitization' which involves GRKs and beta-arrestins. beta-arrestin1 binds to phosphorylated receptors preventing further G-protein stimulation. This study examined whether Par-4, beta-arrestin1, AKT1 and GSK-3beta are involved in the pathophysiology of schizophrenia. Lymphocytes obtained from schizophrenia and bipolar patients and healthy controls recruited from the Beer-Sheva Mental Health Center were transformed by Epstein-Barr virus (EBV) into lymphocyte-derived cell lines (LDCL). Post-mortem brain samples were obtained from the Rebecca L. Cooper Brain Bank, Parkville, Australia. The study was approved by the IRB committees of Beer-Sheva, Israel and Parkville, Australia. Levels of the specific proteins were assayed by Western blotting. beta-arrestin1 protein levels were significantly ~2-fold increased in LDCL from schizophrenia patients while Par-4 protein levels were unaltered. A 63% significant decrease was found in frontal cortex phospho-Ser9-GSK-3beta protein levels in schizophrenia but not in those of AKT1, Par-4 or beta-arrestin1. Elevated beta-arrestin1 protein levels in LDCL and decreased phospho-Ser9-GSK-3beta protein levels in post-mortem frontal cortex of schizophrenia patients vs. control groups support the possible involvement of these proteins in the pathophysiology of schizophrenia. However, since we did not find differences in beta-arrestin1, AKT1 and Par-4 protein levels in post-mortem frontal cortex of schizophrenia patients and although GSK-3beta participates in other signalling cascades we can not rule out the possibility that the differences found reflect deviation in DRD2 signalling.

Details

Language :
English
ISSN :
1461-1457
Volume :
11
Issue :
2
Database :
MEDLINE
Journal :
The international journal of neuropsychopharmacology
Publication Type :
Academic Journal
Accession number :
17681085
Full Text :
https://doi.org/10.1017/S1461145707007948