Back to Search Start Over

Toxicity of two pulsed metal exposures to Daphnia magna: relative effects of pulsed duration-concentration and influence of interpulse period.

Authors :
Hoang TC
Gallagher JS
Tomasso JR
Klaine SJ
Source :
Archives of environmental contamination and toxicology [Arch Environ Contam Toxicol] 2007 Nov; Vol. 53 (4), pp. 579-89.
Publication Year :
2007

Abstract

Aquatic organisms living in surface waters experience fluctuating contaminant exposures that vary in concentration, duration, and frequency. This study characterized the role of pulsed concentration, pulsed duration, and the interval between pulses on the toxicity of four metals (Cu, Zn, Se, and As) to Daphnia magna. During 21-d toxicity tests, neonatal D. magna were exposed to single or double pulses. Pulsed concentrations and durations ranged from 32 to 6000 microg/L and 8 to 96 h, respectively. Intervals between two pulses ranged from 24 to 288 h. Mortality, growth, and reproduction were characterized for exposures. For single-pulse exposures of Cu and As, metal concentration had a stronger effect on survival of D. magna than did pulsed duration: pulses with 2X concentration and 1Y duration resulted in more mortality than did pulses with 1X concentration and 2Y duration. In contrast, effects of pulsed duration were stronger than metal concentration for Zn. However, the effects of duration and concentration were similar for Se. The relative effects of pulsed concentration and duration found in the present study revealed that the common method using area under the curve (AUC = concentration x duration) may not always accurately estimate environmental risk from metals (e.g., for Cu, Zn, As). In addition, the occurrence of delayed mortality in the present study revealed that using continuous exposure bioassays might underestimate metal toxicity to aquatic biota. For double-pulse exposures, the toxicity of the second pulse was influenced by the first pulse for all four metals. This influence was dependent on the pulsed concentration and duration and the interval between pulses. Further, toxicity caused by the second pulse decreased as the time between the exposures increased. For all four metals, there existed an interval great enough that the toxicity of the two pulses was independent. This would result in less toxicity for multiple exposures than continuous exposures with the same total exposure duration. The interval time at which the effects of the two pulses were independent increased with increasing concentration. Growth and cumulative reproduction of D. magna over 21 d were not significantly affected by pulsed exposures examined in the present study, indicating recovery of the organisms.

Details

Language :
English
ISSN :
0090-4341
Volume :
53
Issue :
4
Database :
MEDLINE
Journal :
Archives of environmental contamination and toxicology
Publication Type :
Academic Journal
Accession number :
17690832
Full Text :
https://doi.org/10.1007/s00244-006-0266-1