Back to Search Start Over

Synthesis and characterization of the homologous M-M bonded series Ar'MMAr' (M = Zn, Cd, or Hg; Ar' = C6H3-2,6-(C6H3-2,6-Pr(i)2)2) and related arylmetal halides and hydride species.

Authors :
Zhu Z
Brynda M
Wright RJ
Fischer RC
Merrill WA
Rivard E
Wolf R
Fettinger JC
Olmstead MM
Power PP
Source :
Journal of the American Chemical Society [J Am Chem Soc] 2007 Sep 05; Vol. 129 (35), pp. 10847-57. Date of Electronic Publication: 2007 Aug 11.
Publication Year :
2007

Abstract

The synthesis and structural characterization of the first homologous, molecular M-M bonded series for the group 12 metals are reported. The compounds Ar'MMAr' (M = Zn, Cd, or Hg; Ar' = C(6)H(3)-2,6-(C(6)H(3)-2,6-Pr(i)(2))(2)) were synthesized by reduction of the corresponding arylmetal halides by alkali metal/graphite (Zn or Hg) or sodium hydride (Cd). These compounds possess almost linear C-M-M-C core structures with two-coordinate metals. The observed M-M bonds distances were 2.3591(9), 2.6257(5), and 2.5738(3) A for the zinc, cadmium, and mercury species, respectively. The shorter Hg-Hg bond in comparison to that of Cd-Cd is consistent with DFT calculations which show that the strength of the Hg-Hg bond is greater. The arylmetal halides precursors (Ar'MI)(1 or 2), and the highly reactive hydrides (Ar'MH)(1 or 2), were also synthesized and fully characterized by X-ray crystallography (Zn and Cd) and multinuclear NMR spectroscopy. The arylzinc and arylcadmium iodides have iodide-bridged dimeric structures, whereas the arylmercury iodide, Ar'HgI, is monomeric. The arylzinc and arylcadmium hydrides have symmetric (Zn) or unsymmetric (Cd) mu-H-bridged structures. The Ar'HgH species was synthesized and characterized by spectroscopy, but a satisfactory refinement of the structure was precluded by the contamination of monomeric Ar'HgH by Ar'H. It was also shown that the decomposition of Ar'Cd(mu-H)(2)CdAr' at room temperature leads to the M-M bonded Ar'CdCdAr', thereby supporting the view that the reduction of the iodide proceeds via the hydride intermediate.

Details

Language :
English
ISSN :
0002-7863
Volume :
129
Issue :
35
Database :
MEDLINE
Journal :
Journal of the American Chemical Society
Publication Type :
Academic Journal
Accession number :
17691782
Full Text :
https://doi.org/10.1021/ja072682x