Back to Search Start Over

Visual pigments in a living fossil, the Australian lungfish Neoceratodus forsteri.

Authors :
Bailes HJ
Davies WL
Trezise AE
Collin SP
Source :
BMC evolutionary biology [BMC Evol Biol] 2007 Oct 25; Vol. 7, pp. 200. Date of Electronic Publication: 2007 Oct 25.
Publication Year :
2007

Abstract

Background: One of the greatest challenges facing the early land vertebrates was the need to effectively interpret a terrestrial environment. Interpretation was based on ocular adaptations evolved for an aquatic environment millions of years earlier. The Australian lungfish Neoceratodus forsteri is thought to be the closest living relative to the first terrestrial vertebrate, and yet nothing is known about the visual pigments present in lungfish or the early tetrapods.<br />Results: Here we identify and characterise five visual pigments (rh1, rh2, lws, sws1 and sws2) expressed in the retina of N. forsteri. Phylogenetic analysis of the molecular evolution of lungfish and other vertebrate visual pigment genes indicates a closer relationship between lungfish and amphibian pigments than to pigments in teleost fishes. However, the relationship between lungfish, the coelacanth and tetrapods could not be absolutely determined from opsin phylogeny, supporting an unresolved trichotomy between the three groups.<br />Conclusion: The presence of four cone pigments in Australian lungfish suggests that the earliest tetrapods would have had a colorful view of their terrestrial environment.

Details

Language :
English
ISSN :
1471-2148
Volume :
7
Database :
MEDLINE
Journal :
BMC evolutionary biology
Publication Type :
Academic Journal
Accession number :
17961206
Full Text :
https://doi.org/10.1186/1471-2148-7-200