Back to Search Start Over

Credit assigned CMAC and its application to online learning robust controllers.

Authors :
Su SF
Tao T
Hung TH
Source :
IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society [IEEE Trans Syst Man Cybern B Cybern] 2003; Vol. 33 (2), pp. 202-13.
Publication Year :
2003

Abstract

In this paper, a novel learning scheme is proposed to speed up the learning process in cerebellar model articulation controllers (CMAC). In the conventional CMAC learning scheme, the correct numbers of errors are equally distributed into all addressed hypercubes, regardless of the credibility of the hypercubes. The proposed learning approach uses the inverse of learned times of the addressed hypercubes as the credibility (confidence) of the learned values, resulting in learning speed becoming very fast. To further demonstrate online learning capability of the proposed credit assigned CMAC learning scheme, this paper also presents a learning robust controller that can actually learn online. Based on robust controllers presented in the literature, the proposed online learning robust controller uses previous control input, current output acceleration, and current desired output as the state to define the nominal effective moment of the system from the CMAC table. An initial trial mechanism for the early learning stage is also proposed. With our proposed credit-assigned CMAC, the robust learning controller can accurately trace various trajectories online.

Details

Language :
English
ISSN :
1083-4419
Volume :
33
Issue :
2
Database :
MEDLINE
Journal :
IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
Publication Type :
Academic Journal
Accession number :
18238171
Full Text :
https://doi.org/10.1109/TSMCB.2003.810447