Back to Search Start Over

Transforming growth factor-beta1 regulates the fate of cultured spinal cord-derived neural progenitor cells.

Authors :
Park SM
Jung JS
Jang MS
Kang KS
Kang SK
Source :
Cell proliferation [Cell Prolif] 2008 Apr; Vol. 41 (2), pp. 248-64.
Publication Year :
2008

Abstract

Objectives: We have evaluated the physiological roles of transforming growth factor-beta1 (TGF-beta1) on differentiation, migration, proliferation and anti-apoptosis characteristics of cultured spinal cord-derived neural progenitor cells.<br />Methods: We have used neural progenitor cells that had been isolated and cultured from mouse spinal cord tissue, and we also assessed the relevant reaction mechanisms using an activin-like kinase (ALK)-specific inhibitory system including an inhibitory RNA, and found that it involved potential signalling molecules such as phosphatidylinositol-3-OH kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK1/2).<br />Results and Conclusions: Transforming growth factor-beta1-mediated cell population growth was activated after treatment and was also effectively blocked by an ALK41517-synthetic inhibitor (4-(5-benzo(1,3) dioxol-5-yl-4-pyridine-2-yl-1H-imidazole-2-yl) benzamide (SB431542) and ALK siRNA, thereby indicating the involvement of SMAD2 in the TGF-beta1-mediated growth and migration of these neural progenitors cells (NPC). In the present study, TGF-beta1 actively induced NPC migration in vitro. Furthermore, TGF-beta1 demonstrated extreme anti-apoptotic behaviour against hydrogen peroxide-mediated apoptotic cell death. At low dosages, TGF-beta1 enhanced (by approximately 76%) cell survival against hydrogen peroxide treatment via inactivation of caspase-3 and -9. TGF-beta1-treated NPCs down-regulated Bax expression and cytochrome c release; in addition, the cells showed up-regulated Bcl-2 and thioredoxin reductase 1. They also had increased p38, Akt and ERK1/2 phosphorylation, showing the involvement of both the PI3K/Akt and MAPK/ERK1/2 pathways in the neuroprotective effects of TGF-beta1. Interestingly, these effects operate on specific subtypes of cells, including neurones, neural progenitor cells and astrocytes in cultured spinal cord tissue-derived cells. Lesion sites of spinal cord-overexpressing TGF-beta1-mediated prevention of cell death, cell growth and migration enhancement activity have been introduced as a possible new basis for therapeutic strategy in treatment of neurodegenerative disorders, including spinal cord injuries.

Details

Language :
English
ISSN :
1365-2184
Volume :
41
Issue :
2
Database :
MEDLINE
Journal :
Cell proliferation
Publication Type :
Academic Journal
Accession number :
18336470
Full Text :
https://doi.org/10.1111/j.1365-2184.2008.00514.x