Back to Search
Start Over
The reversion effect of the RNAi-silencing mdr1 gene on multidrug resistance of the leukemia cell HT9.
- Source :
-
Cell biology international [Cell Biol Int] 2008 Aug; Vol. 32 (8), pp. 893-8. Date of Electronic Publication: 2008 Apr 08. - Publication Year :
- 2008
-
Abstract
- Overexpression of P-glycoprotein (P-gp), the mdr1 gene product, confers multidrug resistance (MDR) to tumor cells and often limits the efficacy of chemotherapy. This study evaluated RNAi for specific silencing of the mdr1 gene and reversion of multidrug resistance. Three different short hairpin RNAs (shRNAs) were designed and constructed in a pSilencer 3.1-H1 neo plasmid. The shRNA recombinant plasmids were transfected into HT9 leukemia cells. The RNAi effect was evaluated by real-time PCR, Western blotting and cell cytotoxicity assay. In the cell, shRNAs can specifically down-regulate the expression of mdr1, mRNA and P-gp. Resistance against harringtonine, doxorubicin and curcumin was decreased. The study indicated that shRNA recombinant plasmids could modulate MDR in vitro.
- Subjects :
- ATP Binding Cassette Transporter, Subfamily B
ATP Binding Cassette Transporter, Subfamily B, Member 1 metabolism
Cell Line, Tumor
Genetic Vectors
HL-60 Cells
Humans
Leukemia pathology
Transfection
ATP Binding Cassette Transporter, Subfamily B, Member 1 genetics
Drug Resistance, Multiple
Drug Resistance, Neoplasm
Leukemia metabolism
RNA Interference
Subjects
Details
- Language :
- English
- ISSN :
- 1065-6995
- Volume :
- 32
- Issue :
- 8
- Database :
- MEDLINE
- Journal :
- Cell biology international
- Publication Type :
- Academic Journal
- Accession number :
- 18499486
- Full Text :
- https://doi.org/10.1016/j.cellbi.2008.03.021