Back to Search
Start Over
Different transcriptional control of metabolism and extracellular matrix in visceral and subcutaneous fat of obese and rimonabant treated mice.
- Source :
-
PloS one [PLoS One] 2008; Vol. 3 (10), pp. e3385. - Publication Year :
- 2008
-
Abstract
- Background: The visceral (VAT) and subcutaneous (SCAT) adipose tissues play different roles in physiology and obesity. The molecular mechanisms underlying their expansion in obesity and following body weight reduction are poorly defined.<br />Methodology: C57Bl/6 mice fed a high fat diet (HFD) for 6 months developed low, medium, or high body weight as compared to normal chow fed mice. Mice from each groups were then treated with the cannabinoid receptor 1 antagonist rimonabant or vehicle for 24 days to normalize their body weight. Transcriptomic data for visceral and subcutaneous adipose tissues from each group of mice were obtained and analyzed to identify: i) genes regulated by HFD irrespective of body weight, ii) genes whose expression correlated with body weight, iii) the biological processes activated in each tissue using gene set enrichment analysis (GSEA), iv) the transcriptional programs affected by rimonabant.<br />Principal Findings: In VAT, "metabolic" genes encoding enzymes for lipid and steroid biosynthesis and glucose catabolism were down-regulated irrespective of body weight whereas "structure" genes controlling cell architecture and tissue remodeling had expression levels correlated with body weight. In SCAT, the identified "metabolic" and "structure" genes were mostly different from those identified in VAT and were regulated irrespective of body weight. GSEA indicated active adipogenesis in both tissues but a more prominent involvement of tissue stroma in VAT than in SCAT. Rimonabant treatment normalized most gene expression but further reduced oxidative phosphorylation gene expression in SCAT but not in VAT.<br />Conclusion: VAT and SCAT show strikingly different gene expression programs in response to high fat diet and rimonabant treatment. Our results may lead to identification of therapeutic targets acting on specific fat depots to control obesity.
- Subjects :
- Adipocytes drug effects
Animals
Blood Glucose metabolism
Body Weight drug effects
Cannabinoid Receptor Antagonists
Dietary Fats administration & dosage
Gene Expression Regulation
Insulin blood
Leptin blood
Lipoproteins, VLDL blood
Mice
Mice, Inbred C57BL
Piperidines pharmacology
Pyrazoles pharmacology
Rimonabant
Abdominal Fat metabolism
Extracellular Matrix metabolism
Obesity genetics
Obesity metabolism
Subcutaneous Fat metabolism
Transcription, Genetic
Subjects
Details
- Language :
- English
- ISSN :
- 1932-6203
- Volume :
- 3
- Issue :
- 10
- Database :
- MEDLINE
- Journal :
- PloS one
- Publication Type :
- Academic Journal
- Accession number :
- 19030233
- Full Text :
- https://doi.org/10.1371/journal.pone.0003385