Back to Search Start Over

Differential N-glycosylation of kallikrein 6 derived from ovarian cancer cells or the central nervous system.

Authors :
Kuzmanov U
Jiang N
Smith CR
Soosaipillai A
Diamandis EP
Source :
Molecular & cellular proteomics : MCP [Mol Cell Proteomics] 2009 Apr; Vol. 8 (4), pp. 791-8. Date of Electronic Publication: 2008 Dec 16.
Publication Year :
2009

Abstract

Ovarian cancer causes more deaths than any other gynecological disorder. Perturbed glycosylation is one of the hallmarks of this malignancy. Kallikrein 6 (KLK6) elevation in serum is a diagnostic and prognostic indicator in ovarian cancer. The majority of ovarian carcinomas express high levels of KLK6, which diffuses into the circulation. Under physiological conditions, KLK6 is expressed highly in the central nervous system and found at high levels in cerebrospinal fluid from where it enters the circulation. Our aim was to characterize and compare the N-glycosylation status of this protein in ovarian cancer ascites fluid and cerebrospinal fluid. Anion-exchange chromatography was used to reveal different post-translational modifications on the two isoforms. Mobility gel shift Western blot analysis coupled with glycosidase digestion showed that the molecular weight difference between the two isoforms was because of differential glycosylation patterns. The presence of a single N-glycosylation site on KLK6 was confirmed by site-directed mutagenesis. Using a Sambucus nigra agglutinin-monoclonal antibody sandwich enzyme-linked immunosorbent assay approach, it was shown that ovarian cancer-derived KLK6 was modified with alpha2-6-linked sialic acid. The structure and composition of glycans of both KLK6 isoforms was elucidated by glycopeptide monitoring with electrospray ionization-Orbitrap tandem mass spectrometry. Therefore, the extensive and almost exclusive sialylation of KLK6 from ovarian cancer cells could lead to the development of an improved biomarker for the early diagnosis of ovarian carcinoma.

Details

Language :
English
ISSN :
1535-9484
Volume :
8
Issue :
4
Database :
MEDLINE
Journal :
Molecular & cellular proteomics : MCP
Publication Type :
Academic Journal
Accession number :
19088065
Full Text :
https://doi.org/10.1074/mcp.M800516-MCP200