Back to Search
Start Over
Thorium-induced neurobehavioural and neurochemical alterations in Swiss mice.
- Source :
-
International journal of radiation biology [Int J Radiat Biol] 2009 Apr; Vol. 85 (4), pp. 338-47. - Publication Year :
- 2009
-
Abstract
- Purpose: Thorium ((232)Th), a heavy metal radionuclide that targets the liver and skeleton, has been shown to accumulate in the central nervous system at low levels. The present study was aimed to investigate neurobehavioural and neurochemical changes in mice treated with (232)Th at sub-lethal doses.<br />Materials and Methods: Swiss albino mice were administered intraperitoneally with thorium nitrate. The chelation-based therapeutic effect of calcium diethylenetriamine pentaacetate (Ca-DTPA) was tested on the (232)Th-treated mice. (232)Th localisation was determined in brain regions by the Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) method. Achetylcholine esterase (AChE) activity in different brain regions was evaluated to assess the cholinergic function of mice CNS. Oxidative damage was evaluated by assessing the activities of antioxidant enzymes (i.e., superoxide dismutase and catalase) and the level of lipid peroxidation. The neurobehavioural alteration in the treated mice was studied by the shuttle box method.<br />Results: (232)Th accumulation found in different brain regions followed the order: Cerebellum (Cbl) > cortex (Ctx) > hippocampus (Hp) > striatum (Str). However, removal of (232)Th by Ca-DTPA was significant from brain regions like Cbl, Ctx and Str but not from Hp. A significant increase in lipid peroxidation and acetylcholine esterase (AChE) activity was observed in the treated mice but activities of superoxide dismutase and catalase was found substantially decreased. (232)Th treatment impaired the learning and memory-based neurobehaviour of the mice. Furthermore, our data suggest that Ca-DTPA injection in (232)Th-treated animals failed to improve the neurobehaviour of the treated mice, perhaps because Ca-DTPA could not decorporate (232)Th or mitigate (232)Th-mediated neurochemical changes effectively from/in hippocampus, a brain region implicated in learning and memory response.<br />Conclusion: Administration of (232)Th in mice caused neurobehavioural alteration and impairment of cholinergic function, which might be the consequence(s) of oxidative stress induction in different brain regions.
- Subjects :
- Acetylcholinesterase metabolism
Animals
Antioxidants metabolism
Avoidance Learning drug effects
Avoidance Learning radiation effects
Behavior, Animal radiation effects
Biological Transport
Body Weight drug effects
Body Weight radiation effects
Brain cytology
Brain drug effects
Brain metabolism
Brain radiation effects
Central Nervous System metabolism
Central Nervous System radiation effects
Dose-Response Relationship, Drug
Dose-Response Relationship, Radiation
Female
Injections
Lipid Peroxidation drug effects
Lipid Peroxidation radiation effects
Mice
Pentetic Acid pharmacology
Thorium administration & dosage
Thorium metabolism
Thorium Compounds administration & dosage
Thorium Compounds metabolism
Thorium Compounds toxicity
Behavior, Animal drug effects
Central Nervous System drug effects
Neurochemistry
Thorium toxicity
Subjects
Details
- Language :
- English
- ISSN :
- 0955-3002
- Volume :
- 85
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- International journal of radiation biology
- Publication Type :
- Academic Journal
- Accession number :
- 19399679
- Full Text :
- https://doi.org/10.1080/09553000902781071