Back to Search
Start Over
Nuclear magnetic resonance structural studies of intramolecular purine.purine.pyrimidine DNA triplexes in solution. Base triple pairing alignments and strand direction.
- Source :
-
Journal of molecular biology [J Mol Biol] 1991 Oct 20; Vol. 221 (4), pp. 1403-18. - Publication Year :
- 1991
-
Abstract
- Recently, P.A. Beal and P.B. Dervan, expanding on earlier observations by others, have established the formation of purine.purine.pyrimidine triple helices stabilized by G.GC, A.AT and T.AT base triples where the purine-rich third strand was positioned in the major groove of the Watson-Crick duplex and anti-parallel to its purine strand. The present nuclear magnetic resonance (n.m.r.) study characterizes the base triple pairing alignments and strand direction in a 31-mer deoxyoligonucleotide that intramolecularly folds to generate a 7-mer (R/Y-)n.(R+)n(Y-)n triplex with the strands linked by two T5 loops and stabilized by potential T.AT and G.GC base triples. (R and Y stand for purine and pyrimidine, respectively, while the signs establish the strand direction.) This intramolecular triplex gives well-resolved exchangeable and non-exchangeable proton spectra with Li+ as counterion in aqueous solution. These studies establish that the T1 to C7 pyrimidine and the G8 to A14 purine strands are anti-parallel to each other and align through Watson-Crick A.T and G.C pair formation. The T15 to G21 purine-rich third strand is positioned in the major groove of this duplex and pairs through Hoogsteen alignment with the purine strand to generate T.AT and G.GC triples. Several lines of evidence establish that the thymidine and guanosine bases in the T15 to G21 purine-rich third strand adopt anti glycosidic torsion angles under conditions where this strand is aligned anti-parallel to the G8 to A14 purine strand. We have also recorded imino proton n.m.r. spectra for an (R-)n.(R+)n(Y-)n triplex stabilized by G.GC and A.AT triples through intramolecular folding of a related 31-mer deoxyoligonucleotide with Li+ as counterion. The intramolecular purine.purine.pyrimidine triplexes containing unprotonated G.GC, A.AT and T.AT triples are stable at basic pH in contrast to pyrimidine.purine.pyrimidine triplexes containing protonated C+.GC and T.AT triples, which are only stable at acidic pH.
Details
- Language :
- English
- ISSN :
- 0022-2836
- Volume :
- 221
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- Journal of molecular biology
- Publication Type :
- Academic Journal
- Accession number :
- 1942059