Back to Search Start Over

A fast 2D shape recovery approach by fusing features and appearance.

Authors :
Zhu J
Lyu MR
Huang TS
Source :
IEEE transactions on pattern analysis and machine intelligence [IEEE Trans Pattern Anal Mach Intell] 2009 Jul; Vol. 31 (7), pp. 1210-24.
Publication Year :
2009

Abstract

In this paper, we present a fusion approach to solve the nonrigid shape recovery problem, which takes advantage of both the appearance information and the local features. We have two major contributions. First, we propose a novel progressive finite Newton optimization scheme for the feature-based nonrigid surface detection problem, which is reduced to only solving a set of linear equations. The key is to formulate the nonrigid surface detection as an unconstrained quadratic optimization problem that has a closed-form solution for a given set of observations. Second, we propose a deformable Lucas-Kanade algorithm that triangulates the template image into small patches and constrains the deformation through the second-order derivatives of the mesh vertices. We formulate it into a sparse regularized least squares problem, which is able to reduce the computational cost and the memory requirement. The inverse compositional algorithm is applied to efficiently solve the optimization problem. We have conducted extensive experiments for performance evaluation on various environments, whose promising results show that the proposed algorithm is both efficient and effective.

Details

Language :
English
ISSN :
0162-8828
Volume :
31
Issue :
7
Database :
MEDLINE
Journal :
IEEE transactions on pattern analysis and machine intelligence
Publication Type :
Academic Journal
Accession number :
19443920
Full Text :
https://doi.org/10.1109/TPAMI.2008.151