Back to Search
Start Over
Heterolytic reduction of fatty acid hydroperoxides by cytochrome c/cardiolipin complexes: antioxidant function in mitochondria.
- Source :
-
Journal of the American Chemical Society [J Am Chem Soc] 2009 Aug 19; Vol. 131 (32), pp. 11288-9. - Publication Year :
- 2009
-
Abstract
- Cytochrome c (cyt c), a mitochondrial intermembrane electron shuttle between complexes III and IV, can, upon binding with an anionic phospholipid, cardiolipin (CL), act as a peroxidase that catalyzes cardiolipin oxidation. H(2)O(2) was considered as a source of oxidative equivalents for this reaction, which is essential for programmed cell death. Here we report that peroxidase cyt c/CL complexes can utilize free fatty acid hydroperoxides (FFA-OOH) at exceptionally high rates that are approximately 3 orders of magnitude higher than for H(2)O(2). Similarly, peroxidase activity of murine liver mitochondria was high with FFA-OOH. Using EPR spin trapping and LC-MS techniques, we have demonstrated that cyt c/CL complexes split FFA-OOH predominantly via a heterolytic mechanism, yielding hydroxy-fatty acids, whereas H(2)O(2) (and tert-butyl hydroperoxide, t-BuOOH) undergo homolytic cleavage. Computer simulations have revealed that Arg(38) and His(33) are important for the heterolytic mechanism at potential FFA-OOH binding sites of cyt c (but not for H(2)O(2) or t-BuOOH). Regulation of FFA-OOH metabolism may be an important function of cyt c that is associated with elimination of toxic FFA-OOH and synthesis of physiologically active hydroxy-fatty acids in mitochondria.
Details
- Language :
- English
- ISSN :
- 1520-5126
- Volume :
- 131
- Issue :
- 32
- Database :
- MEDLINE
- Journal :
- Journal of the American Chemical Society
- Publication Type :
- Academic Journal
- Accession number :
- 19627079
- Full Text :
- https://doi.org/10.1021/ja904343c