Back to Search Start Over

Suppression of polyglutamine-induced cytotoxicity in Saccharomyces cerevisiae by enhancement of mitochondrial biogenesis.

Authors :
Ocampo A
Zambrano A
Barrientos A
Source :
FASEB journal : official publication of the Federation of American Societies for Experimental Biology [FASEB J] 2010 May; Vol. 24 (5), pp. 1431-41. Date of Electronic Publication: 2009 Dec 14.
Publication Year :
2010

Abstract

Alterations in mitochondrial metabolism have been associated with age-related neurodegenerative disorders. This is seen in diseases caused by misfolding of proteins with expanded polyglutamine (polyQ) tracts, such as Huntington's disease. Although evidence of mitochondrial impairment has been extensively documented in patients and disease models, the mechanisms involved and their relevance to the initiation of polyQ cytotoxicity and development of clinical manifestations remain controversial. We report that in yeast models of polyQ cytotoxicity, wild-type and mutant polyQ domains might associate early with the outer mitochondrial membrane. The association of mutant domains with mitochondrial membranes could contribute to induce significant changes in mitochondrial physiology, ultimately compromising the cell's ability to respire. The respiratory defect can be fully prevented by enhancing mitochondrial biogenesis by overexpression of Hap4p, the catalytic subunit of the transcriptional activator Hap2/3/4/5p complex, the master regulator of the expression of many nuclear genes encoding mitochondrial proteins in yeast. Protecting cellular respiratory capacity in this way ameliorates the effect of expanded polyQ on cellular fitness. We conclude that mitochondrial dysfunction is an important contributor to polyQ cytotoxicity. Our results suggest that therapeutic approaches enhancing mitochondrial biogenesis could reduce polyQ toxicity and delay the development of clinical symptoms in patients.

Details

Language :
English
ISSN :
1530-6860
Volume :
24
Issue :
5
Database :
MEDLINE
Journal :
FASEB journal : official publication of the Federation of American Societies for Experimental Biology
Publication Type :
Academic Journal
Accession number :
20008543
Full Text :
https://doi.org/10.1096/fj.09-148601