Back to Search Start Over

An Achilles' heel in an amyloidogenic protein and its repair: insulin fibrillation and therapeutic design.

Authors :
Yang Y
Petkova A
Huang K
Xu B
Hua QX
Ye IJ
Chu YC
Hu SQ
Phillips NB
Whittaker J
Ismail-Beigi F
Mackin RB
Katsoyannis PG
Tycko R
Weiss MA
Source :
The Journal of biological chemistry [J Biol Chem] 2010 Apr 02; Vol. 285 (14), pp. 10806-21. Date of Electronic Publication: 2010 Jan 27.
Publication Year :
2010

Abstract

Insulin fibrillation provides a model for a broad class of amyloidogenic diseases. Conformational distortion of the native monomer leads to aggregation-coupled misfolding. Whereas beta-cells are protected from proteotoxicity by hexamer assembly, fibrillation limits the storage and use of insulin at elevated temperatures. Here, we have investigated conformational distortions of an engineered insulin monomer in relation to the structure of an insulin fibril. Anomalous (13)C NMR chemical shifts and rapid (15)N-detected (1)H-(2)H amide-proton exchange were observed in one of the three classical alpha-helices (residues A1-A8) of the hormone, suggesting a conformational equilibrium between locally folded and unfolded A-chain segments. Whereas hexamer assembly resolves these anomalies in accordance with its protective role, solid-state (13)C NMR studies suggest that the A-chain segment participates in a fibril-specific beta-sheet. Accordingly, we investigated whether helicogenic substitutions in the A1-A8 segment might delay fibrillation. Simultaneous substitution of three beta-branched residues (Ile(A2) --> Leu, Val(A3) --> Leu, and Thr(A8) --> His) yielded an analog with reduced thermodynamic stability but marked resistance to fibrillation. Whereas amide-proton exchange in the A1-A8 segment remained rapid, (13)Calpha chemical shifts exhibited a more helical pattern. This analog is essentially without activity, however, as Ile(A2) and Val(A3) define conserved receptor contacts. To obtain active analogs, substitutions were restricted to A8. These analogs exhibit high receptor-binding affinity; representative potency in a rodent model of diabetes mellitus was similar to wild-type insulin. Although (13)Calpha chemical shifts remain anomalous, significant protection from fibrillation is retained. Together, our studies define an "Achilles' heel" in a globular protein whose repair may enhance the stability of pharmaceutical formulations and broaden their therapeutic deployment in the developing world.

Details

Language :
English
ISSN :
1083-351X
Volume :
285
Issue :
14
Database :
MEDLINE
Journal :
The Journal of biological chemistry
Publication Type :
Academic Journal
Accession number :
20106984
Full Text :
https://doi.org/10.1074/jbc.M109.067850