Back to Search
Start Over
Retroviral infection in vivo requires an immune escape virulence factor encrypted in the envelope protein of oncoretroviruses.
- Source :
-
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2010 Feb 23; Vol. 107 (8), pp. 3782-7. Date of Electronic Publication: 2010 Feb 08. - Publication Year :
- 2010
-
Abstract
- We previously delineated a highly conserved immunosuppressive (IS) domain within murine and primate retroviral envelope proteins (Envs). The envelope-mediated immunosuppression was manifested by the ability of the proteins, when expressed by allogeneic tumor cells normally rejected by engrafted mice, to allow these cells to escape, at least transiently, immune rejection. Using this approach, we identified key residues whose mutation specifically abolishes IS activity without affecting the "mechanical" fusogenic function of the entire envelope. Here, we genetically "switched off' the envelope-mediated immunosuppression of an infectious retrovirus, the Friend murine leukemia virus, while preserving mutant envelope infectivity both ex vivo and in vivo, thus allowing us to test the functional importance of envelope-mediated immunosuppression in retrovirus physiology. Remarkably, we show, in vivo, that the non-IS mutant virus displays the same propagation kinetics as its WT counterpart in irradiated immunocompromised mice but that it is rapidly and totally cleared from normal immunocompetent mice, which become fully protected against a challenge with the WT retrovirus. Using cell depletion strategies, we further establish that envelope-mediated immunosuppression enables the retrovirus to escape innate (natural killer cells) and adaptive (CD8 T cells) antiviral effectors. Finally, we show that inactivated mutant virions induce higher humoral and cellular responses than their WT counterparts. In conclusion, our work demonstrates the critical role of Env-induced immunosuppression for retrovirus propagation in vivo and identifies a unique definite target for antiretroviral therapies and vaccine strategies, also characterized in the human T-cell leukemia virus (HTLV) and xenotropic murine leukemia virus-related virus (XMRV) retroviruses, opening unprecedented prospects for the treatment of retroviral diseases.
- Subjects :
- Animals
Friend murine leukemia virus genetics
Leukemia, Experimental prevention & control
Mice
Mice, Inbred BALB C
Mice, Inbred C57BL
Mutation
NIH 3T3 Cells
Retroviridae Infections prevention & control
T-Lymphocytes, Cytotoxic immunology
T-Lymphocytes, Cytotoxic virology
Tumor Virus Infections prevention & control
Viral Envelope Proteins genetics
Viral Vaccines genetics
Viral Vaccines immunology
Virulence Factors genetics
Friend murine leukemia virus immunology
Immune Tolerance
Leukemia, Experimental immunology
Retroviridae Infections immunology
Tumor Virus Infections immunology
Viral Envelope Proteins immunology
Virulence Factors immunology
Subjects
Details
- Language :
- English
- ISSN :
- 1091-6490
- Volume :
- 107
- Issue :
- 8
- Database :
- MEDLINE
- Journal :
- Proceedings of the National Academy of Sciences of the United States of America
- Publication Type :
- Academic Journal
- Accession number :
- 20142478
- Full Text :
- https://doi.org/10.1073/pnas.0913122107