Back to Search
Start Over
Observation of an antimatter hypernucleus.
- Source :
-
Science (New York, N.Y.) [Science] 2010 Apr 02; Vol. 328 (5974), pp. 58-62. Date of Electronic Publication: 2010 Mar 04. - Publication Year :
- 2010
-
Abstract
- Nuclear collisions recreate conditions in the universe microseconds after the Big Bang. Only a very small fraction of the emitted fragments are light nuclei, but these states are of fundamental interest. We report the observation of antihypertritons--comprising an antiproton, an antineutron, and an antilambda hyperon--produced by colliding gold nuclei at high energy. Our analysis yields 70 +/- 17 antihypertritons ((Lambda)(3)-H) and 157 +/- 30 hypertritons (Lambda3H). The measured yields of Lambda3H ((Lambda)(3)-H) and 3He (3He) are similar, suggesting an equilibrium in coordinate and momentum space populations of up, down, and strange quarks and antiquarks, unlike the pattern observed at lower collision energies. The production and properties of antinuclei, and of nuclei containing strange quarks, have implications spanning nuclear and particle physics, astrophysics, and cosmology.
Details
- Language :
- English
- ISSN :
- 1095-9203
- Volume :
- 328
- Issue :
- 5974
- Database :
- MEDLINE
- Journal :
- Science (New York, N.Y.)
- Publication Type :
- Academic Journal
- Accession number :
- 20203011
- Full Text :
- https://doi.org/10.1126/science.1183980