Back to Search Start Over

The ultrastructure and contractile properties of a fast-acting, obliquely striated, myosin-regulated muscle: the funnel retractor of squids.

Authors :
Rosenbluth J
Szent-Györgyi AG
Thompson JT
Source :
The Journal of experimental biology [J Exp Biol] 2010 Jul 15; Vol. 213 (Pt 14), pp. 2430-43.
Publication Year :
2010

Abstract

We investigated the ultrastructure, contractile properties, and in vivo length changes of the fast-acting funnel retractor muscle of the long-finned squid Doryteuthis pealeii. This muscle is composed of obliquely striated, spindle-shaped fibers ~3 mum across that have an abundant sarcoplasmic reticulum, consisting primarily of membranous sacs that form 'dyads' along the surface of each cell. The contractile apparatus consists of 'myofibrils' approximately 0.25-0.5 microm wide in cross section arrayed around the periphery of each cell, surrounding a central core that contains the nucleus and large mitochondria. Thick myofilaments are approximately 25 nm in diameter and approximately 2.8 microm long. 'Dense bodies' are narrow, resembling Z lines, but are discontinuous and are not associated with the cytoskeletal fibrillar elements that are so prominent in slower obliquely striated muscles. The cells approximate each other closely with minimal intervening intercellular connective tissue. Our physiological experiments, conducted at 17 degrees C, showed that the longitudinal muscle fibers of the funnel retractor were activated rapidly (8 ms latent period following stimulation) and generated force rapidly (peak twitch force occurred within 50 ms). The longitudinal fibers had low V(max) (2.15 +/-0.26 L(0) s(-1), where L(0) was the length that generated peak isometric force) but generated relatively high isometric stress (270+/-20 mN mm(-2) physiological cross section). The fibers exhibited a moderate maximum power output (49.9 W kg(-1)), compared with vertebrate and arthropod cross striated fibers, at a V/V(max) of 0.33+/-0.044. During ventilation of the mantle cavity and locomotion, the funnel retractor muscle operated in vivo over a limited range of strains (+0.075 to -0.15 relative to resting length, L(R)) and at low strain rates (from 0.16 to 0.91 L(R) s(-1) ), corresponding to a range of V/V(max) from 0.073 to 0.42. During the exhalant phase of the jet the range of strains was even narrower: maximum range less than +/-0.04, with the muscle operating nearly isometrically during ventilation and slow, arms-first swimming. The limited length operating range of the funnel retractor muscles, especially during ventilation and slow jetting, suggests that they may act as muscular struts.

Details

Language :
English
ISSN :
1477-9145
Volume :
213
Issue :
Pt 14
Database :
MEDLINE
Journal :
The Journal of experimental biology
Publication Type :
Academic Journal
Accession number :
20581273
Full Text :
https://doi.org/10.1242/jeb.037820